古い恒星系で探る天の川銀河の化学進化と元素の起源

石垣美歩 (国立天文台・ハワイ観測所) 天文・天体物理若手夏の学校、太陽・恒星セッション 2023年8月1-4日 東京大学本郷キャンパス

Lamp spectra with Subaru/ Prime Focus Spectrograph (PFS) under construction

https://pfs.ipmu.jp/blog/2021/10/p1924

Credit: ESA/Gaia/DPAC, Acknowledgement: A. Moitinho.

Outstanding questions

What old stellar populations in the Milky Way tell us?

- Where does the Solar-system came from? *
- How galaxies formed and evolved? *
- The nature of dark matter *
- * The origin of metals

Beers & Christlieb05, Nomoto+13, Frebel & Norris15, Kobayashi+20

See Freeman & Bland-Hawthorn 2002

THE NEW GALAXY: Signatures of Its Formation

Ken Freeman

Mount Stromlo Observatory, Australia National University, Weston Creek, ACT 2611, Australia; email: kcf@mso.anu.edu.au

Joss Bland-Hawthorn Anglo-Australian Observatory, 167 Vimiera Road, Eastwood, NSW 2122, Australia; email: jbh@aao.gov.au

Origin of metals in the Universe

Atomic Number, Z

Lodders, K. 2020, Solar Elemental Abundances

The chemical evolution of the Universe

Old/metal-poor stars: fossil records of the synthesis of metals in the early Universe

Contents

- * How to find "old" or metal-poor stars in the Milky Way?
 - Wide-field imaging and spectroscopic surveys
- * What metal-poor stars tell us?
 - The origin of elements in the early Universe
- * Open questions about the origin of elements
 - Prospects with new instruments and telescopes

Contents

* How to find "old" or metal-poor stars in the Milky Way?

- Wide-field imaging and spectroscopic surveys

* What metal-poor stars tell us?

- The origin of elements in the early Universe
- * Open questions about the origin of elements
 - Prospects with new instruments and telescopes

Why "old" stars matter

- Low-mass stars are long-lived: > 10 Gyrs for low-mass ($< 1M_{\odot}$) stars *
- * Kinematics of stars are largely conserved: Inference on the initial orbit
- * The surface chemical composition is preserved during the main-sequence phase of stellar evolution: Chemical composition of the birth cloud

Excellent probe of the star formation in the early Universe e.g. the first (Population III or Pop III) stars

Challenges in stellar age estimates

The revolution of Galactic Archaeology with surveys

Parallax (distance)/proper motion: Gaia

- Chemical abundance: LAMOST, GALAH, APOGEE, etc.
 - Asteroseismology: TESS, Kepler, K2

➡ a chronological table of the chemical enrichment history of our Galaxy

Search for the most chemically pristine stars; Narrow-band surveys

A narrow-band filter covering Ca H+K lines

Footprint of the Sky Mapper survey

The record holder of the lowest Fe abundnce: SMSS 0313-6701 Galactic location and kinematics

Steps in stellar chemical abundance analysis Continuum, line strengths, OBSERVATIONS line shape... SPECTRA COLOURS Comparison Atomic data SENSITIVITY 11111 FUNCTIONS (excitation potential, partition) SYNTHETIC SPECTRUM function, transition probability) PHYSICS: DATA ABUNDANCES IONIZATION AND DISSOCIATION ENERGIES MODEL PARTITION FUNCTIONS CONTINUOUS ABSORPTION LUMINOSITIES ATMOSPHERE SPECTRAL LINE DATA Teff. log g. St.-χ, gf, Γ.... COMPUTER PROGRAM $T(\tau), P(\tau), \rho(\tau)...$ NUMERICAL ANALYSIS τ : optical depth EQUATIONS PHYSICS: THEORY Ð. BASIC MODEL ASSUMPTIONS (Figure by Bengt Gustafsson, Astronomical Observatory, Uppsala)

The chemical composition: Extremely Fe-poor and carbon enhanced

Keller+14

 $[Fe/H] < -6.53 (3\sigma)$

Bessel+15, Nordlander+17

- Ca abundance : 10⁻⁷ of the Sun
 Formed under extremely pristine environment
- * C/Ca ratio $>10^4$ of the Sun
 - Unusual source of metals

A scenario for the metal-enrichment source

In a dark matter mini-halo ($\sim 10^6 M_{\odot}$) at $z\gtrsim 20$

Pristine (H) gas

A massive Pop III star $25 - 40 M_{\odot}$

e.g., SMSS 0313-6708

The first metal-enriched stars: Extremely metal-poor (EMP) ([Fe/H] < -3)

Keller+14, Takahashi+14, Chan+17, Choplin+19, Chan+20

The metallicity distribution function at lowest metallicities

A smoking gun of the nature of the first stars and their metal enrichment process

Contents

- * How to find "old" or metal-poor stars in the Milky Way?
 - Wide-field imaging and spectroscopic surveys
- * What metal-poor stars tell us?
 - The origin of elements in the early Universe
- * Open questions about the origin of elements
 - Prospects with new instruments and telescopes

The origin of metals in the early Universe

- * Big Bang nucleosynthesis
 - Is the standard theory of BBN correct? Are the stellar evolution models correct?
- * The hydrostatic burning of massive stars, including the first stars
 - Is the nature of the first stars different from massive stars at present?
- * Core-collapse supernovae
 - How the massive stars explode? Were the explosion energy and/or geometry different?
- * Type la supernovae
 - How white dwarfs explode?
- Neutron capture (s- or r-process) elements
 - Astrophysical sites of s- and r-processes in the early Universe?

Lithium and Big-Bang nucleosynthesis

* Production of Li in the Universe

- Big Bang nucleosynthesis (BBN)
- Cosmic-ray spallation
- Stellar interiors
- Nova
- * Fragile
 - Destroyed at ~10⁶ K
 - (e.g., Hydrogen burning ~ 10^7 K)

The predictions of the primordial Li abundance

Synthesis of CNO in stars

* Hydrogen burning through the CNO cycle

- Main-sequence stars with $\gtrsim 1 M_{\odot}$

- $T \sim 1.5 \times 10^7 \text{ K}$

* Helium burning through the triple alpha process

- The core of the red giant tip
- $T \sim 1 \times 10^8 \text{ K}$

$${}^{4}_{2}\text{He} + {}^{4}_{2}\text{He} \rightleftharpoons {}^{8}_{4}\text{Be}$$
$${}^{8}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + \gamma.$$

* Carbon burning

- Massive stars

-
$$T \sim 6 \times 10^8 \text{ K}$$

$${}^{12}_{6}\text{C} + {}^{4}_{2}\text{He} \rightarrow {}^{16}_{8}\text{O} + \gamma$$

CNO enrichment in the early Universe

Core-collapse supernova

Asymptotic Giant Branch (AGB) stars

Winds from rotating massive stars

The origin of carbon-enhanced metal-poor (CEMP) stars

-2

- * More metal-poor stars show higher [C/Fe] ratios
- * Possible explanation
 - Supernovae of the first stars
 - Mass transfer from an AGB companion
 - Dust cooling in the formation of low-mass second-generation stars
 - Rotating massive stars

Faint supernovae of the first stars

The origin of CEMP stars remain unclear... Larger samples of elemental abundances in EMP stars are needed.

a-element: the most popular tracer of galactic chemical evolution

Abundance of nuclei determined by the temperature and density (thermal equilibrium) \rightarrow Onion-skin-like structure with an iron core

Massive stars with $\sim 10 - 100 M_{\odot} \rightarrow$ The core is hot enough to ignite carbon

* a-element

- * Carbon and Neon burning $(T \sim 10^9 \text{ [K]}, t \sim 600 \text{ [yr]})$ \rightarrow Na, Mg, Ne, O
- * Oxygen burning $(T \sim 2 \times 10^9 \text{ [K]}, t \sim \frac{1}{2} \text{ [yr]})$ \rightarrow Si S
- * Silicon burning $(T \ge 3 \times 10^9 \text{ [K]}, t \sim 1 \text{ [day]})$

 \rightarrow Fe Ni (F-peak elements)

Binding energy per nuclei

The fate of massive stars

Extremely high temperature and density $(T \sim 8 \times 10^9 \text{ [K]}, \rho \sim 10^{13} \text{ [kg m}^{-3}\text{]})$

Presence of high-energy photon

Photo-dissociation of Fe (endothermic)

An electron and a proton to produce neutrons

Lose electron degenerate pressure

Losing pressure support leads to Fe core-collapse \rightarrow Core-collapse supernova \rightarrow supernova nucleosynthesis

Explosive nucleosynthesis in core-collapse supernovae (CCSNe)

More elements are created at the time of explosion

Chemical abundances of EMP stars as a tracer of Pop III CCSN yields

- * Extremely metal-poor (EMP) stars: The chemical abundance pattern reflects a single or a few Pop III CCSN yields
- * The α-element abundances in particular depend on the progenitor masses
- The initial mass function (IMF) of the Pop III stars

A possible chemical signature of an extremely massive Pop III star

Xing+23, Nature

A new evidence of the presence of extremely massive ($> 100 M_{\odot}$) Pop III stars as a source of metals in the early Universe

Type Ia supernovae: the production of Fe-peak elements

A thermonuclear explosion of a C-O white dwarf with $M \sim M_{\rm Ch}$

A white dwarf accreting mass from the

Merger of two white dwarfs

Products

- Fe-peak elements (Mn, Fe, Ni)

Nucleosynthesis yields depend on

- Central density of the white dwarf ~10⁷-10⁹ g/cm³
- Initial chemical composition

Present-day probes of the chemical evolution of the Universe

Solar system material, Solar photosphere, galaxy clusters

Selecting nearby old stars by kinematics + elemental abundances + ages

MSTO stars with age > 12 Gyrs (×) from Value-added catalog of GALAH DR3 ($\sim 600,000$ stars) Sharma+18; Buder+20; see also

> Stars with halo-like kinematics $(|v - v_{\odot}| > 150 \text{km/s})$) from GALAHxGaia EDR3

"Old Halo Stars" : candidate of st population in the Solar neighbo

[X/Fe]-[Fe/H] subgroups

Ш

- disk
- Low-a: high-eccentricity, Gaia-Sausage-Enceladus
- Metal-poor: small L₇ (zero net rotation)

Constraints on the contribution of SN la to the metals in old halo stars

Chemical evolution models with all the possible channels

Contents

- * How to find "old" or metal-poor stars in the Milky Way?
 - Wide-field imaging and spectroscopic surveys
- * What metal-poor stars tell us?
 - The origin of elements in the early Universe
- * Open questions about the origin of elements
 - Prospects with new instruments and telescopes

Summary of the open questions in the next decade

- * The nature of the very first (PopIII) stars in the Universe
 - Diversity in chemical abundances in the outer Milky Way halo
 - Consistency with the high-z observations (e.g. JWST)
- Supernova explosion mechanisms
 - Elements produced by explosive nucleosynthesis
- * The complete explanation of the Solar-system abundances
 - Chemical evolution and the formation of the Milky Way

Recent and future multi-element surveys of Galactic stellar populations

Probing multiple nucleosynthesis channels: core-collapse SNe, SNIa, s/r/i process, etc.

Covering large volumes

Multi-element abundances: probe of multiple nucleosynthesis channels

Elemental abundance distribution from GALAH survey

Buder et al. 2021

The next generation instruments

- Prime Focus Spectrograph (PFS)/Subaru
 - Wide field (1.3deg^2), >2 3 0 0 fibers
 - Identification of chemically pristine stars in the • dwarf satellite galaxies and field halo stars.
- HROS/TMT lacksquare
 - Detailed elemental abundance estimates of the ulletmost metal-poor stars
 - Test theories of supernova/stellar nucleosynthesis
- ➡ Nature of the first stars and their metal yields

PFS: wide-field and deep spectroscopic surveys of the dwarf satellites

TMT: High-resolution spectroscopy of stars in ultra-faint dwarf

Ultra-faint dwarf galaxies: A large fraction of CEMP and r-rich stars

Best suited to constrain the astrophysical sources responsible for producing the metals

- * How to find "old" or metal-poor stars in the Milky Way?
 - distribution function (MDF).
 - The MDF at the lowest [Fe/H] range is important, but missing.
- * What metal-poor stars tell us?
 - - The primordial abundance and BBN
 - The nature and explosion mechanisms of the Pop III stars
 - Progenitors of SNIa
- Open questions about the origin of elements
 - abundances to constrain supernova yields in the early Universe.

Summary

- Wide-field imaging and spectroscopic surveys have been successful in finding chemically pristine stars and constraining their metallicity

- The origin of elements in the early Universe have been constrained by chemical abundance patterns in metal-poor stars.

- Prospects with new instruments and telescopes: a larger volume including the Milky Way outer halo and more detailed elemental

