Particle Dark Matter ~Current status of theory & search~

Motoko Fujiwara (Technische Universität München)

53rd Summer school on Astronomy & Astrophysics @Hongo, Tokyo August 3rd, 2023

Contents

- What is Dark Matter (DM)?
 DM candidates
 DM search directions
- New direction of DM search (Neutron star as DM target)

Part 2

What is Dark Matter?

Dark Matter

cf.
$$M(r) = \int dr 4\pi r^2 \rho(r)$$

Missing mass [Oort (1932)]

- Vertical stellar motion of solar neighborhood
 - \rightarrow Our universe (=visible component) lacks the mass \rightarrow Missing mass problem

"Dark Matter" [Zwicky (1933)]

- Dynamical mass of Coma cluster is analyzed
- Virial theorem is applied
 2(Kinetic energy) = (Potential energy) @stable system

Rotational curve of galaxy TRubba, et al. (1970)]

- Expectation:
- Observed:

 $mv(r)^2$

r

DM: Necessary condition

DM evidences (summary)

- Rotational curves of galaxy
 Rubin et al. (1980)
- Bullet clusters

Markevich et al. (2002), Clowe et al. (2006)

Gravitational lensing

Oguri et al. (2018)

Implication?

Invisible(="Dark") unknown massive source

* Evidences are discovered independently in various scales

* Required as necessary component in our universe (discussed later)

Qualitative feature of DM

- Electrically neutral
- Behave as matter @structure formation (~Massive)
- Stable /long-lived

Vast possibilities for DM candidates But no suitable candidate in the Standard Model (SM)

(review) Standard Model Particles

If DM is an elementary particle, we need to update the SM table

What is the particle nature of DM? (eg. DM mass, DM spin, DM interaction w/ SM particle, DM self-interaction, ...)

DM density profile

$r_s = 24.42 \text{ kpc},$ $\rho_s = 0.184 \text{ GeV cm}^{-3}.$

N-body simulation

- Realizing DM halo in computer fixing cosmological model (such as ΛCDM model)
- Global ($\sim 100 \text{ kpc}$) profile of DM halo can be predicted \rightarrow vs observations

Navarro-Frenk-White profile

- N-body simulation of Cold DM profile
- Center part: shallower than $\sim r^{-1}$
- Near viral radius: steeper than $\sim r^{-2}$

$$\rho_{\rm NFW}(r) \equiv \rho_s \left(\frac{r}{r_s}\right)^{-1} \left(1 + \frac{r}{r_s}\right)^{-2}$$

Variation of DM density profiles

[Abramowski, et al. [H.E.S.S] (2015)]

Cored Einasto

Cusp vs Core

Dark Matter Density (GeV/cm³) Cored NFW Cusped profile -- Cusped Einasto $\rho_{\rm Einasto}(r) \equiv \rho_s \exp\left[-\frac{2}{\alpha_s} \left(\left(\frac{r}{r_s}\right)^{\alpha_s} - 1\right)\right]$ Cusped NFW Cored profile $\rho(r) = \begin{cases} \rho_{\rm Einasto}(r) & \text{for } r > r_c, \\ \rho_{\rm Einasto}(r_c) & \text{for } r < r_c, \end{cases} \quad (r_c : \text{core radius})$ **10**⁻¹ 10 **Distance to Galactic Center (kpc)** Profiles Einasto Einasto2 Einasto: [Bertone, et al. (2009)] Einasto2: [Cirelli, et al. (2011)] $\rho_{\rm s} \, [{\rm GeV} \, {\rm cm}^{-3}]$ 0.079 $r_{\rm s}$ [kpc] 20.0**Cored Einasto** 10⁴ 0.17 α_{s} જી OFF1 Cored NFW J (GeV²/cm⁶ kpc) 01 02 02 - Cusped Einasto Cusped profile: Enhancement in flux for small angle Cusped NFW Numerical impact \rightarrow several orders \rightarrow Huge uncertainty from DM density profiles Signal Region especially to probe DM in indirect detection 10 **Background Region**

10⁻¹

Angular Distance (deg)

(: We need global DM density profile)

DM candidates

DM candidates (1/2)

c_s : speed of sound

Primordial blackhole (PBH)

- Compact object formed in early universe
- (density fluctuation)> (critical value) $\simeq c_s^2$ \rightarrow Corresponding region collapse
- (BH scale) ~Universe @collapse time
- BH mass can be flexible cf. (stelar BH mass) $\,\sim M_\odot$

Current status

- $M_{\rm BH} \lesssim 10^{-16} M_{\odot}$: PBH evaporates in current universe
- $M_{\rm BH} \in [10^{-16}, 10^{-12}]M_{\odot}$: 100% DM is possible but some constraints are under debate
- $M_{\rm BH}\gtrsim 10^{-12}M_{\odot}$: constrained by Microlensing, CMB, etc

[Chapline (1975)] [Meszaros (1975)] [Villanueva-Domingo, Mena, Palomares-Ruiz [review] (2021)]

DM candidates (2/2)

Particle DM

- Even if we focus on particle DM candidates, we have vast possibilities for DM
 - \rightarrow DM identification is ultimately a challenging task
- What kind of information do we need for DM identification?
 - DM mass
 - Coupling w/ SM particles

Concrete candidates

- Weakly Interacting Massive Particle (WIMP)
- Sterile neutrino
- Axion
- Feebly Interacting Massive Particle
- Strongly Interacting Massive Particles
- Self-interacting DM ...

Weakly Interacting Massive Particle

Assumption

DM is an unknown elementary particle that "weakly" interacts w/ SM particles

Features

- DM is thermalized in early universe
- WIMP candidate often appears if we extend the SM frame work
- We have various channels to test (& crosscheck) DM property

Let's see what happen once we assume this hypothetical unknown particle in the expanding universe

Annihilation rate

Boltzmann equation

Time evolution of DM number density

Change of DM # in time evolution of expanding universe Change of DM # due to particle processes $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\rm ann} v \rangle (n_{\chi}^2 - n_{\chi,eq}^2)$

- Annihilation rate control process $\rightarrow \propto \langle \sigma_{\rm ann} v \rangle$
- Pair annihilation process $\rightarrow \propto (DM \ \# \ density)^2$
- No change @equilibrium $\rightarrow \propto (n_{\chi}^2 n_{\chi,eq}^2)$

Solve this equation → **prediction** on DM energy density observed today

CMB observation → Observationally favored DM energy density

We can test this scenario by comparing theoretical prediction in light of observation

Thermal history

DM density per coming volume

time

Thermal history

time

Production

- eg1. DM production from SM particles produced during reheating
- eg2. DM production directly from inflaton

* Many possibilities for initial condition

Thermal history

time

Production

Annihilatior

SM

SM

DM

Equilibrium

DM is in thermal equilibrium through the interaction w/ SM particles

→ Physics after equilibrium can "forget" about initial condition We can derive general predictions independent of initial condition DM

g: internal d.o.f

Thermal history

Annihilation

During cosmic expansion, temperature keep decreasing

- → Thermal bath can no longer produce DM pair
- → DM # density decrease exponentially

H: Hubble constant

SM

DM

Annimation

Thermal history

 $1/H \stackrel{!}{\simeq} 1/(n_{\chi,eq} \langle \sigma_{ann} v \rangle)$

WIMP Scenario

Implication of WIMP scenario $c = 3 \times 10^8 \text{ m/s}$ $1 \text{ b} = 10^{-24} \text{ cm}^2$

 $\langle \sigma_{\rm ann} v \rangle \sim 3 imes 10^{-26} \ {\rm cm}^3/{
m s} = 1 \ {\rm pb} \cdot c$ = Typical cross section for weak process

DM search directions

Focusing on WIMP DM

How to probe WIMP DM?

DM pair production

Collider experiment

DM scattering w/ SM particle
Direct detection

DM SM DM SM DM SM

DM

- Mediator's decay width

SM

What we observe: Large missing transverse momentum E_T^{mis (3HEb 02 (5010) d^{145}). We need X so that we can read out transverse momentum for reconstruction

DM SM**Indirect detection** DMSMannihilation Implication of WIMP scenario → Possibility to probe DM through annihilation $\langle \sigma_{\rm ann} v \rangle \sim 3 \times 10^{-26} \ {\rm cm}^3 {\rm /s}$ → Direct test of WIMP scenario Fragments SM DM SMFragments Annihilation Fragmentation $e, p, \nu, \gamma, {}^{2}\mathrm{H}, \cdots$ h, Z, W, t, τ, \cdots

What we observe: Fragment (stable particles) from DM annihilation

Photon flux from DM annihilation

Flux formula

$$\frac{d\Phi_{\gamma}}{dE} = \frac{dN_{\gamma}}{dtdEdA} = \frac{1}{4\pi} \frac{(\sigma_{\chi\chi \to \gamma\gamma}v)}{2!m_{\chi}^2} \frac{dN_{\gamma}}{dE} \int \frac{\rho_{\chi}^2}{\ell^2} dV$$

• Particle physics

- DM mass
- Annihilation cross section \rightarrow cf. $(\sigma_{ann}v) \simeq 3 \times 10^{-26} \text{ cm}^3/\text{s}$ for WIMP scenario
- Energy spectrum

Astrophysics

- DM density profile
- Region of integral

- Source of uncertainty to test prediction
 - \rightarrow Characterized by *J*-factor (see backup slide)

We can directly test WIMP scenario by probing annihilation process

Direct detection (idea)

Sketch of direct detection

Direct detection (event rate)

Contraction of the second s

Scattering

DM

DM

SM

SM

Neutrino background

MC Scattering Scattering Scattering Scattering

Pros & Cons

Underground experiment can control background well

Less uncertainty from DM profile (we only need local info. on density & velocity dist.)

Serious background due to neutrino scattering effects

White region:

We can probe DM-nucleon scattering

Gray dashed curve: Prospect of next generation exp.

Orange region:

→ We may not probe DM in this region

How to probe DM-nucleon scattering in this neutrino background region?

 $(\rightarrow \text{ next slide})$

Summary: Part 1

DM in our universe

- Dark unknown gravitational source are independently implied
- Necessary component to provide density fluctuation in early universe

DM candidates

- Compact object: eg. Primordial blackhole
- Particle candidate: eg. Weakly Interacting Massive particle (WIMP)

Exp./Astrophys. information is indispensable for DM identification

WIMP DM search

- Collider search: Direct production by injecting energy
- Indirect detection: Direct test of WIMP scenario
- Direct detection: Background is well-controled but neutrino w/ BG

Developing new direction to probe DM is mandatory!

