53rd Summer School on Astronomy and Astrophysics@Tokyo University(8/1-4)

Multi-wavelength observations of X-ray binaries & cataclysmic variables

Presenter: Mariko Kimura (Kanazawa University, Japan)

Todays' topics

Introduction

- Transients & accretion disks
- Outbursts of X-ray binaries and cataclysmic variables
- Unsolved problems
- Importance of multi-wavelength observations
- Our recent works
 - Repetitive optical & X-ray variability in the black-hole binary V404 Cyg
 - Standstill-like phenomenon in the white-dwarf binary SS Cyg
- Future observations
- Introduction of my career and life

Introduction

Accretion disks in our universe

Time-domain astronomy

→ Study of transient objects

Binary systems

Accretion disks around compact objects (Black holes, white dwarfs, neutron stars)

→ Central engine of transient events

Outbursts in binary systems

- Easy to be observed (bright, many objects)
- **Outbursts** = sudden brightening of the disk
- Multi-wavelength emission

(Kimura & Done 2019)

Mechanism of outbursts

Thermal-viscous instability triggered by partial ionization of hydrogen

Disk instability model

- limit-cycle instability propagates over the entire disk
- Constant mass transfer rates from the secondary

Unsolved problems

Big data \rightarrow Discovery of peculiar outbursts that cannot be explained by the simple model

Importance of multi-wavelength observations

Study 1: Repetitive optical & X-ray variability in the blackhole binary V404 Cyg

What is V404 Cygni?

The 2015 summer outburst in V404 Cyg

Violent optical variability with repetitive patterns

1 less than 3 minutes after the first detection !

Correlation with X-ray variability

Violent variability at low luminosity

at 0.001-0.1 L_{Edd}.

Violent variability at low luminosity

Short summary

- V404 Cyg entered outbursts in 2015 after 26 yrs dormancy.
- We found large-amplitude & short-term optical variations with repetitive patterns for the first time.
- The optical variations were well-correlated with the simultaneous X-ray variations.
- X-ray irradiation was dominant in optical emission.
- Violent variability occurred at low luminosity -> Radiation-pressure instability is unlikely as the mechanism of these variations

Another kind of instability for long-period systems ?

Object name	Orbital period	
V404 Cyg	6.5 d	
GRS 1915+105	33.9 d	
IGR J17091-3624	> 4 d	
V4641 Sgr	2.8 d	

Kimura et al. (2016, Nature, 54, 529): "Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni"

Study 2: Standstill-like phenomenon in the whitedwarf binary SS Cyg

Classification of dwarf novae

• Repeat outbursts

Classification of dwarf novae

Classification of dwarf novae

 $\dot{M}_{\rm tr} \sim \dot{M}_{\rm crit}$

- Intermediate type between NLs and SS Cyg stars
- Fluctuations of mass transfer rates ?

The standstill is not explained by the simple disk instability model with constant mass transfer rates.

→ The unified model for outbursts is not completed ..

SS Cyg: the brightest dwarf nova

SS Cygni

1900-2010 (1-day means)

- Monitored at optical wavelengths for >100 years
- Monitored at X-rays for >20 years
- Repeat dwarf-nova outbursts with intervals of ~1 month
- Recognized as the prototype of SS Cyg-type dwarf novae

The 2021 anomalous event & its precursor

• SS Cyg is no longer the prototype dwarf nova ..

• First event in the long history of observations (the 2021 anomalous event)

→ What causes standstill in dwarf novae ?

The 2021 anomalous event & its precursor

Our campaigns

Optical: Amateur groups (VSNET, AAVSO), Tomo-e Gozen at Kiso Observatory

X-rays: NICER, NuSTAR, MAXI, Swift

Possible scenarios

How did the increase in the optical & X-ray flux in quiescence occur?

- 1. Increase of mass-transfer rates from the secondary star
 - ↑ No positive evidence
- 2. Strong X-ray irradiation of the disk and/or the secondary star
- 3. The accretion rate in the disk increases for some reasons

Strong X-ray irradiation ?

Background

- Practically, the X-ray spectra of DNe have been fitted by multi-temperature plasma models.
- We have to consider the reflection by the WD and/or the disk.

Reflection

Our model

•

To express Fe fluorescence line Tbabs * (reflect * cevmkl + gaussian)

Bremsstrahlung emissivity

$$L(\nu) \propto \int_{T_{bb}}^{T_{max}} \frac{\epsilon(T, n^2, \nu)}{\epsilon(T, n^2)} dT$$

$$d(EM) \propto \left(\frac{T}{T_{\max}}\right)^{\alpha} d(\log T) \propto \left(\frac{T}{T_{\max}}\right)^{\alpha-1} dT,$$

(Done & Osborne 1997; Ishida et al. 2009; Nakaniwa et al. 2019)

Strong X-ray irradiation ?

• Green: NICER (0.5–8 keV), Purple: NuSTAR (3.0–50 keV), Black: model

- T_max ~ 25-30 keV
- solid angle ~ 0.2 0.3
- Flux increases by ~2-5 times
- Lx ~ 10³³ erg / s

The X-ray irradiation of the disk and the secondary star is inefficient

Geometry of X-ray emitting plasma

- The solid angle of the reflector was >1
- T_max ~ 20 keV

(Ishida et al. 2009)

Vertically extended

Higher temperature \rightarrow larger pressure \rightarrow larger scale height

- The solid angle of the reflector was 0.2-0.3
- T_max ~ 25–30 keV

Possible scenarios

How did the increase in the optical & X-ray flux in quiescence occur?

- 1. Increase of mass-transfer rates from the secondary star
 - ↑ No positive evidence
- 2. Strong X-ray irradiation of the disk and/or the secondary star

↑ Weak

3. The accretion rate in the disk increases for some reasons

Bright inner disk during quiescence

We can explain the increase of **both** of optical & X-ray flux.

Temporal enhancement of viscosity in the cool state ?

Effect of enhanced viscosity

- Enhancement of viscosity in the cool state
 - → Smaller limit cycle -
- Increase of the flux level in quiescence
 Frequent small and inside-out outbursts

↑ Optical light curve in the precursor

The transition wave does not easily propagate over the disk.

Nature of the 2021 anomalous event

- If the viscosity in the cool state is extremely enhanced ..
 - → Light curves just oscillate and show no clear outbursts

⁽Mineshige & Osaki 1985)

Kimura et al. (2021, PASJ, 73, 1262): "On the nature of the anomalous event in 2021 in the dwarf nova SS Cygni and its multi-wavelength transition"

High-speed observations (optical & X-ray)

Tomo-e Gozen (2019 \sim)

NICER (2018~)

- 400-700 nm
- Wide-field video survey by CMOS cameras

Suitable for observations of transient events

Simultaneous observations with Tomo-e & NICER

日付	装置	開始時間(UTC)	観測時間(s)
2020/9/14	NICER	10:04:00	1000
	Tomo-e	10:12:10	618
2020/9/15	NICER	12:24:20	1000
	Tomo-e	12:29:06	1064
2020/11/14	Tomo-e	11:59:54	3998
	NICER	12:04:48	2554
2020/11/18	NICER	10:32:18	2694
	Tomo-e	10:59:53	1286

[↑] Provided by Nishino-kun at Tokyo Univ.

- 0.3-10.0 keV
- High time resolution

Highly-correlated optical & X-ray variations

Enhanced X-ray irradiation ?

Nishino, Kimura, Sako et al. (2022, PASJ, 73, L17): "Detection of highly correlated optical and X-ray variations in SS Cygni with Tomo-e Gozen and NICER"

Short summary

- SS Cyg showed an anomalous event like standstill in early 2021.
- We performed X-ray and optical monitoring of this event and its forerunner.
- Our analyses suggest that X-ray irradiation was weak, and that the viscosity in the disk may be enhanced during quiescence.
 - \rightarrow applicable for Z Cam-type standstill ?
- The 2021 anomalous event is a group of very small outbursts ?
- The X-ray emitting region was hotter and expanded.
 - \rightarrow X-ray irradiation became stronger.
 - → Strong correlation between optical & X-ray variations

Future observations

Future observations by upcoming telescopes

X-rays

Multi-wavelength & high-speed photometry, X-ray detailed spectroscopy

Plasma geometry under the strong gravitational field

Future observations of SS Cyg

Coordinated observations by XRISM, NuSTAR, and Tomo-e Gozen of SS Cyg (priority A target during the XRISM PV phase)

Tomo-e Gozen (2019~)

- Return to the normal state ?
- Consistency between X-ray spectra and high-speed multiwavelength observations
- Density & temperature profiles of X-ray plasma

Future observations (KOYOH • HiZ-GUNDAM)

KOYOH (micro satellite)

Wide-field X-ray monitor

Gamma-ray detector

HiZ-GUNDAM

Discovery of many kinds of transients (GRBs synchronized with GW, outbursts of CVs and XBs, magnetar flares, ..)

Multi-wavelength follow-up observations

Discovery of high-redshift GRBs and investigate early universe

Approach to important problems by using small telescopes !

Thank you for your attention.