EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

Appx A. Generalized 2nd law Appx B. de Sitter entropy bound

Shinji Mukohyama (YITP, Kyoto U)

Ref. arXiv: 2204.00228 w/ V.Yingcharoenrat (arXiv: 2111.08119 w/ K.Aoki, M.A.Gorji & K.Takahashi)

Also Arkani-Hamed, Cheng, Luty and Mukohyama 2004 (hep-th/0312099) Mukohyama 2005 (hep-th/0502189)

Collaborators

K.Aoki

M.A.Gorji

K.Takahashi

V.Yingcharoenrat

Ref. arXiv: 2204.00228 w/ V.Yingcharoenrat arXiv: 2111.08119 w/ K.Aoki, M.A.Gorji & K.Takahashi

EFT of scalar-tensor gravity with timelike scalar profile

1. Introduction

- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

INTRODUCTION

Why gravity beyond GR? (GR : general relativity)

A motivation for IR modification

- Gravity at long distances
 Flattening galaxy rotation curves
 extra gravity

 Dimming supernovae
 accelerating universe
- Usual explanation: new forms of matter (DARK MATTER) and energy (DARK ENERGY).

Dark component in the solar system?

Precession of perihelion observed in 1800's...

which people tried to explain with a "dark planet", Vulcan,

But the right answer wasn't "dark planet", it was "change gravity" from Newton to GR.

Why gravity beyond GR?

Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.

Why gravity beyond GR?

- Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.
- Help constructing a **theory of quantum gravity**? Superstring, Horava-Lifshitz, etc.

Why gravity beyond GR?

- Can we address mysteries in the universe?
 Dark energy, dark matter, inflation, big-bang singularity, cosmic magnetic field, etc.
- Help constructing a **theory of quantum gravity**? Superstring, Horava-Lifshitz, etc.
- Do we really understand GR?

 \bullet

One of the best ways to understand something may be to break (modify) it and then to reconstruct it.

EFT ON MINKOWSKI BACKGROUND

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

Many gravity theories

- 3 check points
 "What are the physical d.o.f. ?"
 "How do they interact ?"
 "What is the regime of validity ?"
- If two (or more) theories give the same answers to the 3 questions above then they are the same even if they look different.
 > Effective Field Theory (EFT) as universal description

Scalar-tensor theories of gravity

- Metric $g_{\mu\nu}$ + scalar field ϕ
- Jordan (1955), Brans & Dicke (1961), Bergmann (1968), Wagoner (1970), ...
- Most general scalar-tensor theory of gravity with 2nd order covariant EOM: Horndeski (1974)
- DHOST theories beyond Horndeski: Langlois & Noui (2016)
- U-DHOST theories beyond DHOST: DeFelice, Langlois, Mukohyama, Noui & Wang (2018)
- All of them (and more) are universally described by an effective field theory (EFT)

EFT of inflation / dark energy = EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing Nambu-Goldstone boson

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing Nambu-Goldstone boson

Simplest : ghost condensation

ref. Arkani-Hamed, Cheng, Luty, Mukohyama 2004

Systematic construction of EFT of ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left< \partial_{\mu} \phi \right> \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$$

Gauge choice: $\phi(t, \vec{x}) = t$. $\pi \equiv \delta \phi = 0$ (Unitary gauge) Residual symmetry: $\vec{x} \rightarrow \vec{x}'(t, \vec{x})$

Write down most general action invariant under this residual symmetry.

(\implies Action for π : undo unitary gauge!)

Start with flat background

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$\partial h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$$

Under residual ξ^i

$$\partial h_{00} = 0, \partial h_{0i} = \partial_0 \xi_i, \partial h_{ij} = \partial_i \xi_j + \partial_j \xi_i$$

Action invariant under ξⁱ $(h_{00})^2$

OK

Beginning at quadratic order, since we are assuming flat space is good background.

Action invariant under ξⁱ Beginning at quadratic order, $\begin{cases} \left(h_{00}\right)^2 & \mathbf{OK} \\ \left(b_{0i}\right)^2 & \end{cases}$ since we are assuming flat space is good background. $\begin{bmatrix} \mathbf{X}^{0}, \mathbf{X}^{ij} \\ \mathbf{K}^{2}, \mathbf{K}^{ij} \mathbf{K}_{ii} \end{bmatrix} = \frac{1}{2} \left(\partial_{0} h_{ij} - \partial_{j} h_{0i} - \partial_{i} h_{0j} \right)$ $\square \qquad \qquad L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} \right)^2 - \frac{\alpha_1}{M^2} K^2 - \frac{\alpha_2}{M^2} K^{ij} K_{ij} + \cdots \right\}$ Action for π $\boldsymbol{\xi^{0}} = \boldsymbol{\pi} \left\{ \begin{array}{l} h_{00} \to h_{00} - 2\partial_{0} \boldsymbol{\pi} \\ K_{ii} \to K_{ii} + \partial_{i} \partial_{j} \boldsymbol{\pi} \end{array} \right.$ $\square \sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$

Robust prediction

e.g. Ghost inflation [Arkani-hamed, Creminelli, Mukohyama, Zaldarriaga 2004]

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left\langle \partial_{\mu} \phi \right\rangle \uparrow^{P((\partial\phi)^2)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\begin{array}{|c|c|c|c|c|} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & &$$

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

EFT ON COSMOLOGICAL BACKGROUND

Extension to FLRW background = EFT of inflation/dark energy

Creminelli, Luty, Nicolis, Senatore 2006 Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

- Action invariant under $x^i \rightarrow x^i(t,x)$
- Ingredients $g_{\mu\nu}, g^{\mu\nu}, R_{\mu\nu\rho\sigma}, \nabla_{\mu},$

t & its derivatives

• 1st derivative of t

$$\partial_{\mu}t = \delta^{0}_{\mu} \qquad n_{\mu} = \frac{\partial_{\mu}t}{\sqrt{-g^{\mu\nu}\partial_{\mu}t\partial_{\nu}t}} = \frac{\delta^{0}_{\mu}}{\sqrt{-g^{00}}}$$
$$g^{00} \qquad h_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu}$$

• 2nd derivative of t

$$K_{\mu\nu} \equiv h^{\rho}_{\mu} \nabla_{\rho} n_{\nu}$$

Unitary gauge action

$$I = \int d^4x \sqrt{-g} L(t, \delta^0_\mu, K_{\mu\nu}, g_{\mu\nu}, g^{\mu\nu}, \nabla_\mu, R_{\mu\nu\rho\sigma})$$

 $I = M_{Pl}^{2} \int dx^{4} \sqrt{-g} \left[\frac{1}{2} R + c_{1}(t) + c_{2}(t) g^{00} \right]$ $+ L^{(2)}(\tilde{\delta}g^{00}, \tilde{\delta}K_{\mu\nu}, \tilde{\delta}R_{\mu\nu\rho\sigma}; t, g_{\mu\nu}, g^{\mu\nu}, \nabla_{\mu}) \right]$

 $L^{(2)} = \lambda_1(t)(\tilde{\delta}g^{00})^2 + \lambda_2(t)(\tilde{\delta}g^{00})^3 + \lambda_3(t)\tilde{\delta}g^{00}\tilde{\delta}K^{\mu}_{\mu}$ $+ \lambda_4(t)(\tilde{\delta}K^{\mu}_{\mu})^2 + \lambda_5(t)\tilde{\delta}K^{\mu}_{\nu}\tilde{\delta}K^{\nu}_{\mu} + \cdots$

NG boson

• Undo unitary gauge $t \to \tilde{t} = t - \pi(\tilde{t}, \vec{x})$ $H(t) \to H(t+\pi), \quad \dot{H}(t) \to \dot{H}(t+\pi),$

 $\lambda_i(t) \rightarrow \lambda_i(t+\pi), \quad a(t) \rightarrow a(t+\pi),$

 $\delta^0_\mu \quad \to \quad (1+\dot{\pi})\delta^0_\mu + \delta^i_\mu \partial_i \pi,$

NG boson in decoupling (subhorizon) limit

$$I_{\pi} = M_{Pl}^{2} \int dt d^{3} \vec{x} \, a^{3} \left\{ -\frac{\dot{H}}{c_{s}^{2}} \left(\dot{\pi}^{2} - c_{s}^{2} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) -\dot{H} \left(\frac{1}{c_{s}^{2}} - 1 \right) \left(\frac{c_{3}}{c_{s}^{2}} \dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i} \pi)^{2}}{a^{2}} \right) + O(\pi^{4}, \tilde{\epsilon}^{2}) + L_{\tilde{\delta}K, \tilde{\delta}R}^{(2)} \right\}$$
$$\frac{1}{c_{s}^{2}} = 1 - \frac{4\lambda_{1}}{\dot{H}}, \quad c_{3} = c_{s}^{2} - \frac{8c_{s}^{2}\lambda_{2}}{-\dot{H}} \left(\frac{1}{c_{s}^{2}} - 1 \right)^{-1}$$

Sound speed

 c_s : speed of propagation for modes with $\omega \gg H$ $\omega^2 \simeq c_s^2 \frac{k^2}{a^2}$ for $\pi \sim A(t) \exp(-i\int \omega dt + i\vec{k}\cdot\vec{x})$

Application: non-Gaussinity of inflationary perturbation $\zeta = -H\pi$ $-\dot{H}\left(\frac{1}{c_s^2}-1\right)\left(\frac{c_3}{c_s^2}\dot{\pi}^3-\dot{\pi}\frac{(\partial_i\pi)^2}{a^2}\right)+O(\pi^4,\tilde{\epsilon}^2)+L^{(2)}_{\tilde{\delta}K,\tilde{\delta}R}\right\} \longrightarrow \text{non-Gaussianity}$ $\langle \zeta_{\vec{k}_1}(t) \, \zeta_{\vec{k}_2}(t) \, \zeta_{\vec{k}_3}(t) \rangle = (2\pi)^3 \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) B_{\zeta}$ 2 types of 3-point interactions $c_s^2 \rightarrow \text{size of non-}\overline{\text{Gaussianity}}$ $k^6 B_{\zeta}|_{k_1=k_2=k_3=k} = \frac{18}{5} \Delta^2 (f_{NL}^{\dot{\pi}(\partial_i \pi)^2} + f_{NL}^{\dot{\pi}^3})$ $f_{NL}^{\dot{\pi}(\partial_i \pi)^2} = \frac{85}{324} \left(1 - \frac{1}{c_s^2} \right) \qquad f_{NL}^{\dot{\pi}^3} = \frac{5c_3}{81} \left(1 - \frac{1}{c_s^2} \right) \qquad \propto \frac{1}{c^2} \quad \text{for small } c_s^2$ $c_3 \rightarrow$ shape of non-Gaussianity plots of $B_{\zeta}(k, \kappa_2 k, \kappa_3 k)/B_{\zeta}(k, k, k)$ $c_3 = -4.3$ $c_{3} = 0$ κ₂ $c_3 = -3.6$ 1 κ_2 \mathcal{K}_2 0.5 0.50.5 1.0 Linear combination **Prototype of the** Prototype of the orthogonal shape equilateral shape of the two shapes

Summary so far

- Ghost condensation universally describes all scalar-tensor theories of gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in the EFT of inflation/DE.
- These EFTs provide universal descriptions of all scalar-tensor theories of gravity with timelike scalar profile on each background, including Horndeski theory, DHOST theory, U-DHOST theory, and more.

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

BLACK HOLE WITH TIMELIKE SCALAR PROFILE

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH. Otherwise, contours of the scalar field would become ill-defined.
- Are there BH solution with timelike scalar profile?

Stealth solutions in k-essence Mukohyama 2005

- Action in Einstein frame
- $I = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R + P(X) \right] \qquad X = -g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$ • EOMS $\frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} P'(X) g^{\mu\nu} \partial_\nu \phi \right) = 0$
 - $M_{\rm Pl}^2 G_{\mu\nu} = 2P'(X)\partial_\mu\phi\partial_\nu\phi + P(X)g_{\mu\nu}$
- Stealth sol with $X = X_0$, where $P'(X_0)=0$

$$G_{\mu\nu} = \Lambda_{\text{eff}} g_{\mu\nu} \qquad \Lambda_{\text{eff}} = P(X_0)/M_{\text{Pl}}^2$$

- $X = X_0 (\neq 0)$ • $u^{\mu} = g^{\mu\nu} \partial_{\nu} \phi$ defines geodesic congruence $(u^{\nu} \nabla_{\nu} u^{\mu} = -\nabla^{\mu} X/2 = 0)$
 - $\Leftrightarrow \phi/\sqrt{|X_0|}$ defines Gaussian normal coord.

Stealth solutions in k-essence

Mukohyama 2005

T COnst

- Any metric locally admits Gaussian normal coord.
- If P'(X) has a real root X_0 then any vacuum GR sol with $\Lambda_{\text{eff}} = P(X_0)/M_{\text{Pl}}^2$ locally leads to a stealth sol.
- Schwarzshild metric admits a "globally" well-behaved Gaussian normal coord. (Lemeitre reference frame) $g_{\mu\nu}dx^{\mu}dx^{\nu} = -d\tau^{2} + \frac{r_{g}dR^{2}}{r(\tau,R)} + r^{2}(\tau,R)d\Omega^{2}$ $r(\tau,R) = \left[\frac{3}{2}\sqrt{r_{g}(R-\tau)}\right]^{2/3}$
- Stealth Schwarzschild solution with $\phi = \sqrt{X_0}\tau$, if P'(X) has a positive root X₀ and if Λ_{eff} is canceled by Λ_{bare}

Stealth solutions with $\phi = qt + \psi(r)$

- Schwarzschild in k-essence (Mukohyama 2005)
- Schwarzschild-(A)dS in Horndeski theory (Babichev & Charmousis 2013, Kobayashi & Tanahashi 2014) Schwarzshild-(A)dS in DHOST (Ben Achour & Liu 2019, Motohashi & Minamitsuji 2019)
- Kerr-(A)dS in DHOST (Charmousis & Crisotomi & Gregory & Stergioulas 2019)
- However, perturbations around most of those stealth solutions are infinitely strongly coupled (de Rham & Zhang 2019). This means the solutions cannot be trusted.
- Approximately stealth solution in ghost condensate does not suffer from strong coupling (Mukohyama 2005). Why?

Origin of strong coupling

- EFT around stealth Minkowski sol. (= ghost condensate) \rightarrow universal dispersion relation without the usual k² term $\omega^2 = \alpha k^4 / M^2$
- For α = O(1) (>0), EFT is weakly coupled all the way up to ~M.
- If eom's for perturbations are strictly 2nd order (as in DHOST) then α = 0 and the dispersion relation loses dependence on k
 → strong coupling
- [For $\omega^2 = c_s^2 k^2$, strong coupling @ $E \sim c_s^{7/4} M$]

Strong coupling scales EFT of inflation/DE in decoupling limit $S_{\pi} = M_{\rm Pl}^2 \int dt d^3 \vec{x} \, a^3 \left[-\frac{\dot{H}}{c_{\rm s}^2} \left(\dot{\pi}^2 - c_{\rm s}^2 \frac{(\partial_i \pi)^2}{a^2} \right) \right]$ $\left(-\dot{H}\left(rac{1}{c_{s}^{2}}-1
ight)\left(rac{c_{3}}{c_{s}^{2}}\dot{\pi}^{3}-\dot{\pi}rac{(\partial_{i}\pi)^{2}}{a^{2}}
ight)+\mathcal{O}(\pi^{4}, ilde{\epsilon}^{2})+\mathcal{L}^{(2)}_{ ilde{\delta}K, ilde{\delta}R}
ight)$ $\left| \frac{1}{c_{\rm s}^2} = 1 + \frac{4\lambda_1}{-\dot{H}}, \quad c_3 = c_{\rm s}^2 - \frac{8c_{\rm s}^2\lambda_2}{-\dot{H}} \left(\frac{1}{c_{\rm s}^2} - 1 \right)^{-1}$ • If $c_s^2 \simeq \text{const is not too small, } \mathcal{L}^{(2)}_{\tilde{\delta}K,\tilde{\delta}R}$ can be ignored. We further assume $0 < c_s < 1$. $S_{\pi} = \int dt d^{3} \vec{\tilde{x}} a^{3} (c_{\rm s} \epsilon M_{\rm Pl}^{2} H^{2}) \left| \dot{\pi}^{2} - \frac{(\tilde{\partial}_{i} \pi)^{2}}{a^{2}} + \left(\frac{1}{c_{\rm s}^{2}} - 1\right) \dot{\pi} \left(c_{3} \dot{\pi}^{2} - \frac{(\tilde{\partial}_{i} \pi)^{2}}{a^{2}} \right) + \cdots \right|$ $\vec{x} = c_{\rm s} \vec{\tilde{x}}$ $\dot{\pi}^2 \sim \frac{(\partial_i \pi)^2}{a^2} \sim \frac{E^4}{c_{\rm s} \epsilon M_{\rm Pl}^2 H^2} \qquad \left(\frac{1}{c_{\rm s}^2} - 1\right) |\dot{\pi}| \Big|_{E=E_{\rm cubic}} \sim \frac{1}{\max[|c_3|, 1]}$ $E_{\text{cubic}} \lesssim \frac{(c_{\text{s}}^{5} \epsilon M_{\text{Pl}}^{2} H^{2})^{1/4}}{\sqrt{1-c^{2}}} \to 0 \quad (c_{\text{s}}^{5} \epsilon/(1-c_{\text{s}}^{2})^{2} \to 0)$

A solution: scordatura

Motohashi & Mukohyama 2019

- Detuning of degeneracy condition recovers $\omega^2 = \alpha k^4 / M^2$ and uplifts the strong coupling scale to $\sim |\alpha|^{7/2} M$. If the amount of detuning is small enough then an apparent ghost is heavy enough to be integrated out.
- Scordatura = weak and controlled detuning of degeneracy condition
- Scordatura DHOST realizes ghost condensation near stealth solutions while it behaves as DHOST away from them.

Strong coupling scales De Sitter limit = small c_s^2 limit ullet $+\lambda_3 \left(H - \frac{\partial_j^2 \pi}{a^2}\right) \frac{(\partial_i \pi)^2}{a^2} + (\lambda_4 + \lambda_5) \frac{(\partial_i^2 \pi)^2}{a^4} + \cdots$ $\lambda_1 = \frac{M^4}{8M_{\rm Pl}^2}, \quad \lambda_3 = \frac{M^3\beta}{2M_{\rm Pl}^2}, \quad \lambda_4 = -\frac{M^2(\alpha + \gamma)}{2M_{\rm Pl}^2}, \quad \lambda_5 = \frac{M^2\gamma}{2M_{\rm Pl}^2}$ $S_{\pi} = \frac{M^4}{2} \int dt d^3 \vec{x} \, a^3 \left| \dot{\pi}^2 - c_{\rm s}^2 \frac{(\partial_i \pi)^2}{a^2} - \dot{\pi} \frac{(\partial_i \pi)^2}{a^2} - \frac{\alpha}{M^2} \frac{(\partial_i^2 \pi)^2}{a^4} + \frac{\beta}{M} \left(H - \frac{\partial_j^2 \pi}{a^2} \right) \frac{(\partial_i \pi)^2}{a^2} + \cdots \right|$ $\begin{array}{c|c} E^{-1}p^{-3}M^4(E\pi)^2 \sim 1 & \longrightarrow & \pi \sim \frac{E^{3/2}}{p^{1/2}M^2} \\ \hline \end{array}$ $rac{\omega^2}{M^2} = lpha rac{k^4}{M^4 a^4}$ for $\max \left| c_{\rm s}^2, |\beta| \frac{H}{M} \right| \ll |\alpha| \frac{k^2}{M^2 a^2} \ll 1$ $\rightarrow E_{\text{cubic}} \simeq |\alpha|^{7/2} M$
Approximately stealth BH in ghost condensate Mukohyama 2005

- Two time scales: $t_{BH} \ll t_{GC} \sim M_{PI}^2/M^3$
- For t_{BH} << t << t_{GC}, a usual BH sol is a good approximation → approximately stealth

of higher derivative terms

Approximately stealth BH in ghost condensate

Mukohyama 2005; Cheng, Luty, Mukohyama and Thaler 2006

- A tiny tadpole due to higher derivative terms is canceled by extremely slow time-dependence.
- As a result, $\pi = \delta \phi$ starts accreting gradually.
- XTE J1118+480 (M_{bh}~7M_{sun},r~3R_{sun},t~240Myr or 7 Gyr) M<10¹²GeV much weaker than M<100GeV

$$M_{bh} = M_{bh0} \times \left[1 + \frac{9\alpha M^2}{4M_{Pl}^2} \left(\frac{3M_{Pl}^2 v}{4M_{bh0}} \right)^{2/3} \right]$$

v : advanced null coordinate
 α : coefficient of h.d. term

Summary of stealth BH with timelike scalar profile

- If we want to learn something about scalar field DE from BH then we need to consider BH solutions with timelike scalar profile
- Stealth solutions = backgrounds with GR metric and non-trivial scalar profile → examples of BH solutions with timelike scalar profile
- Many of them suffer from strong coupling problem, which is solved by scordatura (= controlled detuning of degeneracy condition)
- DHOST/Horndeski do not include scordatura but U-DHOST does (DeFelice, Mukohyama, Takahashi 2022).
- EFT of ghost condensation already includes scordatura. Arkani-Hamed, Cheng, Luty and Mukohyama 2004
- Approximately stealth solution in scordatura is stealth at astrophysical scales and is free from the strong coupling problem
- Scordatura also helps recover the generalized second law

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

EFT ON ARBITRARY BACKGROUND

arXiv: 2204.00228 w/ V.Yingcharoenrat

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH. Otherwise, contours of the scalar field would become ill-defined.
- Are there BH solution with timelike scalar profile?

- Cosmology and black holes (BHs) play as important roles in gravitational physics as blackbody radiation and hydrogen atoms did in quantum mechanics.
- In cosmology a time-dependent scalar field can act as dark energy (DE), while BHs serve as probes of strong gravity. We then hope to probe the scalar field DE by astrophysical BHs.
- This would require the scalar field profile to be timelike near BH. Otherwise, contours of the scalar field would become ill-defined.
- Are there BH solution with timelike scalar profile?
- Can we develop EFT of scalar-tensor gravity on such BH background?

It is not straightforward...

• General action in the unitary gauge ($\phi = \tau$)

$$S = \int d^4x \sqrt{-g} \ F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$$

- Taylor expansion around the background $S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \cdots \right]$
- The whole action is invariant under 3d diffeo but each term is not...
- Each coefficient is a function of (τ, xⁱ) but cannot be promoted to an arbitrary function.

Solution: consistency relations

• The chain rule

relates xⁱ-derivatives of an EFT coefficient to other EFT coefficients, and leads to consistency relations.

- The consistency relations ensure the spatial diffeo invariance.
- Taylor coefficients should satisfy the consistency relations but are otherwise arbitrary.
- (No consistency relation for τ-derivatives.)

EFT action

$$\begin{split} S &= \int d^4 x \sqrt{-g} \bigg[\frac{M_{\star}^2}{2} f(y) R - \Lambda(y) - c(y) g^{\tau\tau} - \beta(y) K - \alpha_{\nu}^{\mu}(y) \sigma_{\mu}^{\nu} - \gamma_{\nu}^{\mu}(y) r_{\mu}^{\nu} + \frac{1}{2} m_2^4(y) (\delta g^{\tau\tau})^2 \\ &\quad + \frac{1}{2} M_1^3(y) \delta g^{\tau\tau} \delta K + \frac{1}{2} M_2^2(y) \delta K^2 + \frac{1}{2} M_3^2(y) \delta K_{\nu}^{\mu} \delta K_{\nu}^{\nu} + \frac{1}{2} M_4(y) \delta K \delta^{(3)} R \\ &\quad + \frac{1}{2} M_5(y) \delta K_{\nu}^{\mu} \delta^{(3)} R_{\mu}^{\nu} + \frac{1}{2} \mu_1^2(y) \delta g^{\tau\tau} \delta^{(3)} R + \frac{1}{2} \mu_2(y) \delta^{(3)} R^2 + \frac{1}{2} \mu_3(y) \delta^{(3)} R_{\nu}^{\mu} \delta^{(3)} R_{\mu}^{\nu} \\ &\quad + \frac{1}{2} \lambda_1(y)_{\mu}^{\nu} \delta g^{\tau\tau} \delta K_{\nu}^{\mu} + \frac{1}{2} \lambda_2(y)_{\mu}^{\nu} \delta g^{\tau\tau} \delta^{(3)} R_{\nu}^{\mu} + \frac{1}{2} \lambda_3(y)_{\mu}^{\nu} \delta K \delta K_{\nu}^{\mu} + \frac{1}{2} \lambda_4(y)_{\mu}^{\nu} \delta K \delta^{(3)} R_{\nu}^{\mu} \\ &\quad + \frac{1}{2} \lambda_5(y)_{\mu}^{\nu} \delta^{(3)} R \delta K_{\nu}^{\mu} + \frac{1}{2} \lambda_6(y)_{\mu}^{\nu} \delta^{(3)} R \delta^{(3)} R_{\nu}^{\mu} + \dots \bigg] \;, \end{split}$$

- EFT coefficients should satisfy the consistency relations but are otherwise arbitrary
- One can restore 4d diffeo by Stueckelberg trick
- Easy to find dictionary between EFT coefficients and theory parameters
- Can be applied to BH with timelike scalar profile
- Bridge between theories and observations

Applications to BHs with timelike scalar profile

- Background analysis for spherical BH
 [arXiv: 2204.00228 w/ V.Yingcharoenrat]
- Odd-parity perturbation around spherical BH

 Generalized Regge-Wheeler equation
 [arXiv: 2208.02943 w/ K.Takahashi & V.Yingcharoenrat]
 [see also arXiv: 2208.02823 by Khoury, Noumi, Trodden, Wong]
 Quasi-normal mode
 [work in progress w/ K.Takahashi & K.Tomikawa & V.Yingcharoenrat]
- Even-parity perturbation around spherical BH [work in progress w/ K.Takahashi & V.Yingcharoenrat]
- Rotating BH
- Dynamical BH

SUMMARY

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

- There are at least three motivations to go beyond GR:
 (i) mysteries in the universe; (ii) quantum gravity;
 (iii) understanding GR itself.
- Ghost condensation is a universal description of scalartensor gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in a universal description of fluctuations of inflaton/dark energy (DE), called EFT of inflation/DE.
- If we want to learn something about scalar field DE from a black hole (BH) then we need to consider BH solutions with timelike scalar profile.

EFT of scalar-tensor gravity with timelike scalar profile

- Time diffeo is broken by the scalar profile but spatial diffeo is preserved.
- All terms that respect spatial diffeo must be included in the EFT action.
- Derivative & perturbative expansions
- Diffeo can be restored by introducing NG boson

EFT of scalar-tensor gravity on Minkowski background

EFT of scalar-tensor gravity on cosmological background

EFT of scalar-tensor gravity on arbitrary background

Taylor expansion of the general action

= ghost condensation

Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004

 $S = \int d^4x \sqrt{-g} F(R_{\mu\nu\alpha\beta}, g^{\tau\tau}, K_{\mu\nu}, \nabla_{\nu}, \tau)$

= EFT of inflation/dark energy Creminelli, Luty, Nicolis, Senatore 2006

Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

= EFT of BH perturbations

arXiv: 2204.00228 w/ Vicharit Yingcharoenrat

$$S = \int d^4x \sqrt{-g} \left[\bar{F} + \bar{F}_{g^{\tau\tau}} \delta g^{\tau\tau} + \bar{F}_K \delta K + \dots \right]$$

<u>Consistency relations</u> — S is invariant under spatial diffeo but the background breaks it.

$$\frac{d}{dx^{i}}\bar{F} = \bar{F}_{g^{\tau\tau}}\frac{\partial\bar{g}^{\tau\tau}}{\partial x^{i}} + \bar{F}_{K}\frac{\partial\bar{K}}{\partial x^{i}} + \dots$$

- There are at least three motivations to go beyond GR:
 (i) mysteries in the universe; (ii) quantum gravity;
 (iii) understanding GR itself.
- Ghost condensation is a universal description of scalartensor gravity with timelike scalar profile on Minkowski background.
- Extension of ghost condensation to FLRW backgrounds results in a universal description of fluctuations of inflaton/dark energy (DE), called EFT of inflation/DE.
- If we want to learn something about scalar field DE from a black hole (BH) then we need to consider BH solutions with timelike scalar profile.
- EFT of scalar-tensor gravity with timelike scalar profile on arbitrary background was developed. Consistency relations among EFT coefficients ensure the spatial diffeo invariance. Applicable to BHs with scalar field DE.
- Other applications?

Further extension of the web of EFTs

"The Effective Field Theory of Vector-Tensor Theories"

Katsuki Aoki, Mohammad Ali Gorji, Shinji Mukohyama, Kazufumi Takahashi, , JCAP 01 (2022) 01, 059 [arXiv: 2111.08119].

Residual symmetry in the unitary gauge

 $\vec{x} \to \vec{x}'(t, \vec{x})$ $t \to t - g_M \chi(x), \quad A_\mu \to A_\mu + \partial_\mu \chi(x)$

leaving ${ ilde{\delta}^0}_\mu = {\delta^0}_\mu + g_M A_\mu$ invariant

The web of EFTs

c.f. Residual symmetry in unitary gauge for scalar-tensor theories

$$\vec{x} \to \vec{x}'(t, \vec{x})$$

Thank you!

K.Aoki

M.A.Gorji

K.Takahashi

V.Yingcharoenrat

Ref. arXiv: 2204.00228 w/ V.Yingcharoenrat arXiv: 2111.08119 w/ K.Aoki, M.A.Gorji & K.Takahashi

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

Appendix A GENERALIZED 2ND LAW

Mukohyama 2009, 2010

	Higgs mechanism	Ghost condensate Arkani-Hamed, Cheng, Luty and Mukohyama 2004
Order parameter	$\langle \Phi \rangle \uparrow V(\Phi)$	$\left\langle \partial_{\mu} \phi \right\rangle \uparrow^{P((\partial\phi)^2)}$
	$\longrightarrow \Phi$	\rightarrow ϕ
Instability	Tachyon $-\mu^2 \Phi^2$	Ghost $-\dot{\phi}^2$
Condensate	V'=0, V''>0	P'=0, P''>0
Broken symmetry	Gauge symmetry	Time translational symmetry
Force to be modified	Gauge force	Gravity
New force law	Yukawa type	Newton+Oscillation

So far, there is no conflict with experiments and observations if M < 100GeV.

EFT of ghost condensation = EFT of scalar-tensor gravity with timelike scalar profile on Minkowski background

Arkani-Hamed, Cheng, Luty and Mukohyama 2004

Backgrounds characterized by

 $\Rightarrow \left\langle \partial_{\mu} \phi \right\rangle \neq 0 \text{ and timelike}$

♦Background metric is Minkowski.

$$\sum L_{eff} = L_{EH} + M^4 \left\{ \left(h_{00} - 2\dot{\pi} \right)^2 - \frac{\alpha_1}{M^2} \left(K + \vec{\nabla}^2 \pi \right)^2 - \frac{\alpha_2}{M^2} \left(K^{ij} + \vec{\nabla}^i \vec{\nabla}^j \pi \right) \left(K_{ij} + \vec{\nabla}_i \vec{\nabla}_j \pi \right) + \cdots \right\}$$

Holography and GSL

- Do holographic dual descriptions always exist?
 PROBABLY NO. e.g.) A de Sitter space is only metastable and a unitary holographic dual is not known.
- How about ghost condensate?
- Let's look for violation of GSL in ghost condensate, since violation of GSL would indicate absence of holographic dual. (GSL is expected to be dual to ordinary 2nd law.)
- Three proposals: (i) semi-classical heat flow; (ii) analogue of Penrose process; (iii) negative energy.

Different limits of speed

$$g_{A,B\mu\nu} = -u_{\mu}u_{\nu} + c_{A,B}^{-2}(g_{\mu\nu} + u_{\mu}u_{\nu}) \qquad u_{\mu} = \frac{\partial_{\mu}\phi}{\sqrt{-(\partial\phi)^{2}}}$$

- $\langle \partial_{\mu} \phi \rangle \Box M^2 \neq 0$ \longrightarrow preferred direction u_{μ} .
- Different particles A and B may follow geodesics of different metrics $g_{A\mu\nu}$ and $g_{B\mu\nu}$.
- Lorentz breaking effects such as $|c_{A,B}^2-1|$ vanish in the limit M² \rightarrow 0 (M²: order parameter) $c_{A,B}^2=1+O(M^2/M_{Pl}^2)$.

Semi-classical heat flow Dubovsky and Sibiryakov 2006

Semi-classical heat flow

Dubovsky and Sibiryakov 2006; Mukohyama 2009

$$\label{eq:shell} \begin{split} dS_{shell}/dt &= \\ (1/T_{shellB}\text{-}1/T_{shellA}) \\ &*|F_{shell \rightarrow bh}| < 0 \\ dS_{bh}/dt &= 0 \;??? \end{split}$$

- T_{bhB}- GSL_not(violated!
- $|F_{\text{shell} \rightarrow \text{bh}}| / T_{\text{bh}}^2 = O(M^2/M_{\text{Pl}}^2)$
- $|dS_{shell}/dt| / T_{bh} = O(M^4/M_{Pl}^4)$
- dS_{bh}/dt due to accretion is much larger.
- $S_{tot} = S_{shell} + S_{bh}$ does increase!

Negative energy Arkani-Hamed, talk at PI 2006

It appears that S_{bh} can be decreased by sending excitation with P'<0.

Averaged NEC

Mukohyama 2010

Action

$$I = \int dx^4 \sqrt{-g} P(X) \qquad X = -\partial^{\mu} \phi \partial_{\mu} \phi$$

Stress-energy tensor

Stress-energy tensor

$$T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$
 $\rho = 2P'X - P$ $u_{\mu} = \frac{\partial_{\mu}\phi}{\sqrt{X}}$

& shift charge EO. \mathbf{M}

$$\nabla^{\mu} J_{\mu} = 0 \qquad J_{\mu} = -2P' \partial_{\mu} \phi \qquad Q = \int d\Sigma J_{\mu} u^{\mu}$$

In the regime of validity of EFT ($|\chi| <<1$)

$$P = M^{4} \left[p_{0} + \frac{1}{2} p_{2} \chi^{2} + O(\chi^{3}) \right] \qquad \chi = \frac{\chi}{M^{4}} - 1$$

$$\rho + P - M^{4} J_{\mu} u^{\mu} = M^{4} \left[p_{2} \chi^{2} + O(\chi^{3}) \right]$$

Averaged NEC

$$\int d\Sigma(\rho+P) \ge M^2 Q \quad \Longrightarrow \quad \int d\Sigma(\rho+P) \ge 0 \text{ for } Q \ge 0$$

Negative energy Arkani-Hamed, talk at PI 2006; Mukohyama 2010

- GSL in a coarse-grained sense can be protected by the averaged NEC if the shift charge is non-negative. (Negative energy is followed by larger positive energy.)
- Negative charge states are plugged by instabilities in the early universe if the shift symmetry is exact. (|P'| would be large in the early universe.)

EFT of scalar-tensor gravity with timelike scalar profile

- 1. Introduction
- 2. EFT on Minkowski bkgd
- 3. EFT on cosmological bkgd
- 4. BH with timelike scalar profile
- 5. EFT on arbitrary bkgd
- 6. Summary

Appendix B DE SITTER ENTROPY BOUND

Jazayeri, Mukohyama, Saitou, Watanabe 2016

Holography and GSL

- Do holographic dual descriptions always exist?
 PROBABLY NO. e.g.) A de Sitter space is only metastable and a unitary holographic dual is not known.
- How about ghost condensate?
- Let's look for violation of GSL in ghost condensate, since violation of GSL would indicate absence of holographic dual. (GSL is expected to be dual to ordinary 2nd law.)
- Three proposals: (i) semi-classical heat flow; (ii) analogue of Penrose process; (iii) negative energy.
- The generalized 2nd law can hold in the presence of ghost condensate. (Mukohyama 2009, 2010)

Ghost inflation and de Sitter entropy bound

Jazayeri, Mukohyama, Saitou, Watanabe 2016

- Black holes & cosmology in gravity theories are as important as Hydrogen atoms & blackbody radiation in quantum mechanics
- Provide non-trivial tests for theories of gravity e.g. black-hole entropy in string theory
- Does the theory of ghost condensation pass those tests?
- Ghost condensation can be consistent with BH
 thermodynamics (Mukohyama 2009, 2010)
- How about de Sitter thermodynamics?

de Sitter thermodynamics

- de Sitter (dS) spacetime is one of the three spacetimes with maximal symmetry
- dS horizon has temperature $T_H = H/(2\pi)$
- In quantum gravity, a dS space is probably unstable (e.g. KKLT, Susskind, ...). So, let's consider a dS space as a part of inflation
- Friedmann equation \rightarrow 1st law with entropy S = A/(4G_N) = $\pi/(G_NH^2)$ (This is in contrast with analogue gravity systems.)

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

 Slow roll inflation (non-eternal) $\dot{H} = -4\pi G_{\rm N} \dot{\phi}^2$ $S = \pi/(G_{\rm N}H^2)$ dN = Hdt $\frac{\delta\rho}{\rho} \sim \frac{\delta a}{a} \sim H\delta t \sim H \frac{\delta\phi}{\dot{\phi}} \sim \frac{H^2}{\dot{\phi}}$ $\frac{dS}{dN} = \frac{8\pi^2 \dot{\phi}^2}{H^4} \sim \left(\frac{\delta\rho}{\rho}\right)^{-2}$ $|\delta
ho/
ho|\lesssim 1~$ for non-eternal inflation $N_{\rm tot} \lesssim S_{\rm end} - S_{\rm beginning} < S_{\rm end}$

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

• Eternal inflation $\delta \rho / \rho \gtrsim 1 \implies \Delta N \gtrsim \Delta S$

 $N_{\rm obs} \lesssim S_{\rm end}$

- Fluctuation generated during eternal epoch would collapse to form BH → unobservable!
- This bound holds for a large class of models
 of inflation
- Does ghost inflation satisfy the bound?

Ghost inflation

Arkani-Hamed, Creminelli, Mukohyama and Zaldarriaga 2004

[compare $\frac{H}{M_{Pl}\sqrt{\varepsilon}}$]
Prediction of Large non-Gauss.

Leading non-linear interaction $\beta \frac{\dot{\pi} (\nabla \pi)^2}{M^2}$

non-G of ~
$$\beta \left(\frac{H}{M}\right)^{1/4}$$

~ $\beta \left(\frac{\delta \rho}{\rho}\right)^{1/5}$

scaling dim of op.

$$\int dt d^3x \left[\frac{1}{2} \dot{\pi}^2 - \frac{\alpha (\vec{\nabla}^2 \pi)^2}{M^2} + \cdots \right]$$

[Really "0.1" × $(\delta \rho / \rho)^{1/5}$ ~ 10⁻². VISIBLE. In usual inflation, non-G ~ $(\delta \rho / \rho)$ ~ 10⁻⁵ too small.]

$$f_{NL} \sim 82 \beta \alpha^{-4/5}$$
, equilateral type

Planck 2015 constraint (equilateral type)

 $f_{\rm NL} = -4 \pm 43$ (68% CL statistical) $\rightarrow -0.6 \le \beta \alpha^{-4/5} \le 0.5$

de Sitter entropy bound

Arkani-Hamed, et.al. 2007

• Eternal inflation $\delta \rho / \rho \gtrsim 1 \implies \Delta N \gtrsim \Delta S$

 $> N_{\rm obs} \lesssim S_{\rm end}$

- Fluctuation generated during eternal epoch would collapse to form BH → unobservable!
- This bound holds for a large class of models
 of inflation
- Does ghost inflation satisfy the bound? The answer appears to be "no" since N_{tot} can be arbitrarily large. Swampland?

Lower bound on Λ ?

- Jazayeri, Mukohyama, Saitou, Watanabe 2016 • Tiny Λ prevents earlier inflationary modes from being observed. a/k_{\min} , ln *L* $a/k_{\rm max}$ $\frac{a_{\rm end}}{a_{\rm reh}} \sim \left(\frac{\rho_{\rm reh}}{\rho_{\rm inf}}\right)^{1/3} \qquad \frac{a_{\rm reh}}{a_{\rm eq}} \sim \left(\frac{s_{\rm eq}}{s_{\rm reh}}\right)^{1/3}$ $\ddot{a}(t=t_c)=0$ with $6M_{\rm Pl}^2 \frac{\ddot{a}}{a} = -\rho_{\rm m}^{\rm eq} \left(\frac{a_{\rm eq}}{a}\right)^3 + 2\rho_{\Lambda}$ $a_{\rm end}$ $a_{eq} a_c$ $\ln a$ • $N_{obs} \sim \ln(k_{max}/k_{min}) \lesssim S = \pi/(G_N H^2)$ $\Omega_{\Lambda} \gtrsim \exp \left[-10^{42} \left(\frac{M}{100 \,\text{GeV}} \right)^{-2} \right] \qquad M \lesssim 100 \,\text{GeV}$ • In our universe, $\Omega_{\Lambda} = O(1)$ and thus the
 - bound is well satisfied.

Cosmological Page time

Jazayeri, Mukohyama, Saitou, Watanabe 2016

- Hawking rad from BH \rightarrow S_{rad} = S_{ent} increases but S_{BH} (\geq S_{ent}) decreases \rightarrow semi-classical description should break down @ Page time, when S_{BH} ~ half of S_{BH,init}
- After inflation, we expect to see O(1) deviation from semi-classical description @ Page time, when N_{obs} ~ S_{end}
- For example, if Λ decays at $a=a_{decay}$ then

 $\frac{a_{\text{Page}}}{a_{\text{decay}}} \sim \left(\frac{M}{100 \,\text{GeV}}\right)^{-1} \left(\frac{a_{\text{decay}}}{a_{\text{eq}}}\right)^2 \exp\left[10^{42} \left(\frac{M}{100 \,\text{GeV}}\right)^{-2}\right]$

Summary of appendices

- Ghost condensation is the simplest Higgs phase of gravity.
- The low-E EFT is determined by the symmetry breaking pattern. No ghost in the EFT.
- Gravity is modified in IR.
- Consistent with experiments and observations if M < 100GeV.
- It appears easy but is actually difficult to violate the generalized 2nd law by ghost condensate.
- Ghost inflation predicts large non-Gaussianity that can be tested.
- de Sitter entropy bound appears to be violated but is actually satisfied by ghost inflation.