惑星ができない!

- 理論観測両面から探る惑星形成 -

片岡章雅 (国立天文台)

- ・自己紹介
 - 京大理学部・大学院修士 (2006-2012)
 - 総研大博士課程/国立天文台(2012-2014)
 - 2012年夏の学校会場係長
 - 東工大研究員 (2014.9-2015.3)
 - ハイデルベルク大学研究員 (2015.4-2017.3)
 - ・国立天文台 フェロー→助教 (2017.12-)
 - 博士から他大に行きたい人 \bullet
 - 外国での研究生活について聞きたい人
 - 夏の学校について議論したい人

⇒あとで捕まえて!

- 理論観測両面から探る惑星形成 -

概要 ・惑星形成と原始惑星系円盤 ● ミリ波偏光観測によるダスト成長の制限

片岡章雅 (国立天文台)

1. 太陽系の研究

2. 系外惑星の研究

3. 惑星形成の研究

惑星の研究?

太陽系の研究

Jupiter - JUNO mission

Hayabusa 2 mission

系外惑星の研究

Kepler Habitable Zone Planets

惑星形成: 何を解き明かしたいか

 $\mathbf{2}$

~ 1000 km

惑星形成: 何を解き明かしたいか

~ 1 km

~ 1000 km

小石(≈1cm)同士をぶつけたら、くっつくのか?

跳ね返り障壁 (e.g., Zsom et al. 2010)

らっかない問題

Blum et al. (Braunschweig)

68.0

ダストは数 m/s の衝突で破壊される 衝突破壊問題 (e.g., Blum and Münch 1993)

一定密度合体成長の仮定は正しいのか?

E.

11

The second

ダスト(シリケイトや氷)は星間空間で 固体なので、この仮定は正しくない。

1 Se M 52

ダストは付着時にすき間を持つ

弾性応力

表面付着力 (分子間力・水素結合)

弾性体の力学 (Herz理論, 1896)

→表面付着力を追加 (JKR理論, 1971)
→接線応力/摩擦を追加 (Dominik and
Tielens 1997)
→ポテンシャルエネルギーで記述 (Wada
et al. 2007)

Suyama et al. 2008

Akimasa Kataoka (National Astronomical Observatory of Japan)

Kataoka et al. 2013b, 国立天文台 理論研究部プレスリリース

Wada et al. 2011 スカスカのダスト集合体→配位数小→跳ね返らない

Wada et al. 2009

ダスト集合体を破壊するのに必要な速度 (1/2) Nm₀ v² = (結合の数) × (結合の強さ) ~ N X Ebreak $=> v \sim 1 m/s \times (r_0/0.1 \mu m)^{-5/6}$ for silicate, 10 m/s \times (r₀/0.1 μ m)-5/6 for ice

数値計算の結果 v = 8 m/s \times (r₀/0.1 μ m)^{-5/6} for silicate, 80 m/s \times (r₀/0.1 μ m)-^{5/6} for ice

Dominik and Tielens 1997

Wada et al. 2007, 2009, 2013

Bastian Gundlach

2016年6月, ブラウンシュバイク工科大学にて

- Contraction

I II II II II

Gundlach and Blum 2015

円盤を"横から"見ている 中心星は隠されている

可視光・赤外線望遠鏡

λ~ 0.1 - 1 μm

電波干涉計

λ~1 mm

HL Tau (BIMA 2.7 mm)

~

Mundy et al. 1996

HL Tau (CARMA 1.3 mm)

Kwon et al. 2011

HL Tau (ALMA 1.0 mm)

ALMA Partnership 2015

•	0	0	•	
0	٠		۲	
		۲		
			٠	
		•		
	•			

ALMAで見えた2本の「うで」

観測された原始惑星系円盤 Elias 2-24

Perez et al. 2016

磁気流体シミュレーション

Tomida et al. 2017

ALMAで見えた「偏った円盤」

van der Marel et al. 2013

想像図 (van der Marel et al. 2013)

ALMAで見えた「偏った円盤」

Fukagawa et al. 2013

SAO 206462

ALMAで見えた「リング円盤」

ALMA Partnership 2015

Fedele et al. 2018

- ・若い円盤→2本の腕が示すダイナミックな動き
- ・偏った円盤→惑星誕生中か?
- ・リング・ギャップ構造→惑星がギャップの中にいる?

アルマで見た原始惑星系円盤

・アルマ以前は「円盤状のものがありそう」と思われていただけだったが...

アルマで惑星形成の現場の姿がわかってきた。

Infrared polarization

- We observe scattered light with infrared polarization
- Infrared polarization traces the surface layer
 - Full of structures (such as spiral arms)

\bullet

The observer is you.

(the line of sight is perpendicular to the plane of this slide) thermal dust emission of other dust grains

a dust grain

Horizontal Polarization

Vertical Polarization

Theoretical prediction

Anisotropy \rightarrow net polarization

<u>Kataoka</u>, et al., 2015

Akimasa Kataoka (NAOJ fellow)

散乱偏光の理論予測

Cycle 3 観測提案書 (PI:Kataoka)

cf.) <u>Kataoka</u> et al. 2015

ALMA 観測

Kataoka, et al. 2016b

(disk, edge-on view)

Yang, Li, et al. 2016

See also <u>Kataoka</u> et al. 2016a

i=45°

Radiative transfer calculations

Pol. vectors

Radial inside, azimuthal outside

<u>Kataoka</u>, et al., 2015

Parallel to the disk minor axis

Kataoka, et al., 2016a see also Yang et al. 2016

Conditions of dust grains for polarization

(grain size) >~ λ

 For efficient polarization (grain size) <~ λ

Polarization requires (grain size) ~ $\lambda/2\pi$

 $\lambda = 870 \,\mu m \,(ALMA Band 7)$

Grain size constraints by polarization

Multi-wave polarization \rightarrow constraints on the grain size

Millimeter-wave polarization of disks

HD 142527; Kataoka et al. 2016, HL Tau; Stephens et al. 2017, IM Lup; Hull et al. 2018, CW Tau and DG Tau; Bacciotti et al. 2018, Cepheus A HW2 ; Fernández-Lopez et al. 2016, HD 163296; Dent et al. 2019, HD100546; Pohl et al. in prep.

Inclined disks: self-scattering at 870 µm a lopsided disk: self-scattering at north and alignment at south

self-scattering

Stephens et al. 2017 (see also <u>Kataoka</u> et al. 2017) alignment with radiation

Akimasa Kataoka (NAOJ fellow)

Effects of porosity on self-scattering

Mass budget problem

median of the distributions, as labeled.

Fig. 3. Masses of the cores of single exoplanets and the sum of the cores in exoplanetary systems, as well as disk masses, as a function of the mass of their host star. The colored regions encompass the 10th and 90th percentile of the distributions, while the dashed lines represent the

・おわりに

- これまでの研究
 - 修士時代に星形成磁場における偏光観測予測。博士時代は 完全に理論。PDで初めて観測論文を書く。
- ・理論屋が観測にも手を出せる時代
 - ALMAはキャリブレーション済みのデータをくれる。
 - プロポーザルは理論的背景があると強い
- 研究する上では、良い問題を見つけることが大事
 - 博士から他大に行きたい人
 - 外国での研究生活について聞きたい人 \bullet
 - 夏の学校について議論したい人

⇒あとで捕まえて!

- ・弾性体の力学を応用し、ダストは惑星形成の初期段階で 隙間の多い構造を取ることを理論的に証明 • すき間の多いダスト集合体は跳ね返り障壁を回避
- ・氷粒子の場合、衝突破壊問題を回避可能
- (中心星落下問題を回避)
- 散乱に起因するミリ波偏光理論の確立
- ALMA観測によりミリ波偏光を実証

まとめ

