2018年7月23日 天文•天体物理荢手夏の学校

ハッブル系列の起源

但木謙一（国立天文育）

1．銀河の啡究について
2．渴多区の研究生活について

銀河の形態と星形成活動

銀河形態の定量化

Kormendy \＆Bender 1996による銀河の形態分類

ELLIPTICAL GALAXIES

Kormendy \＆Bender 2012による銀河の形態分類

銀河形態の定量化

The Sersic Profile

表面輝度プロファイル
$\Sigma(r)=\Sigma_{e} \exp \left[-\kappa\left(\left(\frac{r}{r_{e}}\right)^{1 / n}-1\right)\right]$
n ：セルシック指数
n＝0．5－＞Gaussian
n＝1－＞exponential
$\mathrm{n}=4$－＞de Vaucouleurs（1／4乗則）

Re：有効半径（50\％の光が入る半径）

Peng et al． 2010

銀河形態の定量化

NASA，ESA，M．Kornmesser

銀河の形態と星形成活動

median $\mathrm{n}_{\text {Sersic }}$
Wuyts et al． 2010

- 星形成銀河は円盤形（ $\mathrm{n} \sim 1$ ）
- 星形成を止めた銀河は楕円形（ $\mathrm{n} \sim 4$ ）
- 120億年前（z＝2．5）にすでにこの関係が成立

観測された画像がクランピーな構造でも，星質量の空間分布はスムーズな円盤である

銀河の形態と星形成活動

バルジ質量と星形成活動に強い相関がある

Lang et al． 2014

昔の円盤形銀河

現在の棈円开銀河

活発 星作り 終えた

現在の楕円形銀河

（イメージ図）

形態の変化，星形成活動の停止は ほぼ同時期に起きたと考えられる
一方で相関関係＝因果関係とは限らない

いつ銀河の形態が形作られたのか？

鑼包の中て作られる星の量

銀河の屋台骨が作られた，銀河隼化史上最も重要な時代

（宇宙誕生）

人間でいう成長期に相当

いつ銀河の形態が形作られたのか？

星形成を止めた銀河の観測

 （Onodera＋14）－星形成を止めたのはz＝2－ 2.5 頃
－星形成のタイムスケール はく1Gyr －あくまで巨大銀河の場合

夏の学校2016招待講演
（http：／／astro－wakate．sakura．ne．jp／ss2015／ web／file／torape／shohtai／onodera．pdf）

現在の楕円形銀河

（イメージ図）

形態の変化，星形成活動の停止は

z～2の時代に

ほぼ同時に起きたと考えられる

いつ銀河の星形成が止まったのか？

銀河の星質量関数の赤方偏移進化（Muzzin＋13）

銀河は無限大に成長していない

- Mstar～10 ${ }^{11} \mathrm{M}$ solarになると，成長が止まる
- 単純にへCDMモデルでは説明できない

昔の円盤形銀河

現在の楕円形銀河

$\mathrm{z}=4.3$ にある星形成銀河のSED

多くの場合は静止系可視（ $\lambda_{\text {rest }}$ 6000 \AA ）での形態 $\mathrm{z}=1$ だと $1.2 \mu \mathrm{~m}, ~ \mathrm{z}=2$ だと $1.8 \mu \mathrm{~m}$

銀河の形態と星形成活動

－HSTに観測によって，『銀河のどこに星がある か』はかなりよくわかってきた
－『銀河のどこで星が作られているか？』がわか れば，銀河の形態進化が予測できる

銀河のどこで星が作られているか？

HST観則によるH α 䀘線放射の分布（Wuyts＋13）

銀河のどこで星が作られているか？

VLT䂓則によるH α 閳線放射の分布（Tacchella＋15a，b）

- 星形成領域（H α 輝線）は星の分布より広がっている
- 中心部に比べて，外側で星形成（SFR／Mstar）が活発
inside－out quenching

銀河のどこで星が作られているか？

銀河の形態進化とクエンチング（Tacchella＋15a）

Redshift	$\mathrm{Z} \sim 2$	$\mathrm{z} \sim 0$
tuniverse	3.3 Gyr	13.7 Gyr

star formation at all radii
formation of high central stellar mass densities through＇compaction＇
quenching of SFR
in the center，outskirts still forming stars

quenching proceeds inside－out

a typical quenched early－type $\sim \mathrm{M}^{*}$ galaxy

形態進化？
クエンチング
＞星形成領域（H α 輝線）は星の分布より広がっている
〉中心部に比べて，外側で星形成（SFR／Mstar）が活発
$>$ inside－out quenching

ダスト減光問題

ダスト減光問臓

ダスティー
Whitaker et al． 2017

- 重い銀河ほどUV光は吸収され，IRで再放射されている
- Mstar＞ $1^{11}{ }^{11} \mathrm{M}_{\text {solar の星形成銀河では，UVやH } \alpha \text { 輝線は }}$星形成の指標として不定性が大きい
ダストの連続光を観測すれば良い

ダスト減光問題

Z～2にある星形成銀渠（Tadaki＋2017）

MIPS／24um

PACS／160um

＞中間赤外•遠赤外の観測はスペースからの観測になる ため空間分解能が悪い
＞ 8 kpc 程度（～1＂）の遠方銀河を分解するには，これ らより遥かに高い空間分解能が必要

Going to ALMA observations

ESOINAOJ/NRAO 1

ダスト減光問鬞

Z～2にある星形成銀河（Tadaki＋2017）

MIPS／24um

PACS／160um
ALMA／870um

－圧倒的に高い空間分解能でダスト連続光を観門
〉銀河のどこで星が作られているか直接钼ることが可能

銀河のどこで星が作られているか？

HSTで観る遠方銀河

－円盤形（n～1）で広がっている（Re＝3－6 kpc）

HST \＆ALMAて観る遠方銀河

円円盤形（ $\mathrm{n} \sim 1$ ）で広がっている（Re＝3－6 kpc）
－中心 1 kpc で激しい星形成
ガスが銀河の中心に運ばれている

銀河の進化を予測する

本円盤で星が生まれている場合

円盤形の銀河
もっと円盤が目立つ銀河に

本中心部で星が生まれている場合

円盤形の銀河
中心の膨らみが目立つ銀河に

bulge formation

inside-out growth phase

