TOKYO TIE Pursuing Excellence

系外惑星を見つけるには

系外惑星発見数:約1800個 (2014/7/24現在)

系外惑星の主な間接的検出法

■トランジット法

■重力マイクロレンズ法

Kepler宇宙望遠鏡

□2009年打ち上げ □十万個以上の恒星をモニター観測 □相対測光精度~2×10⁻⁵

系外惑星の主な間接的検出法

■トランジット法

■重力マイクロレンズ法

系外惑星の公転周期、質量

ハビタブルゾーン惑星:GJ581

20 10 Sun -10 (m s⁻¹)₋₁ of star (in solar **Radial Velocity** 5 Gliese 581 Mass Habitable zone Possible extension of the habitable zone due to various uncertainties. 0.1 0.1 1.0 10 Distance from star (AU) 0.5 0 1 **Orbital** phase

Wikipedia

Fig. 5.— Phased reflex barycentric velocities of the host star due individually to the p at 3.15 days, 5.37 days, 12.9 days, 37 days, 67 days, and 433 days from the all-circu of Table 2. Filled (red) hexagon points are from Keck while filled (blue) triangles are HARPS.

Vogt et al. 2010

Topics

- ・恒星の視線速度変化を測る
- ・見かけの視線速度変化
- ・惑星系の安定性

恒星の"歩み"をとらえる

恒星の視線速度変化を測る

視線速度変化の例

$$\frac{\Delta\lambda}{\lambda_0} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

v=10m/s $\rightarrow \Delta\lambda/\lambda=3$ x10⁻⁸

高分散エシェル分光器で撮られた 恒星のスペクトル

(短波長)

エシェル格子の分散方向→

ー本一本の光の帯は、回折の次数に対応 光の帯中の黒い筋は、恒星大気中の元素 による吸収線 多数のラインを使って統計的に 精度を上げる δv=δv_{line}/VN_{line}=10/V100=1 m/s

恒星のスペクトルの違い: 細くて深い吸収線がたくさんある明るい星ほど高精度

測定機器:高分散エシェル分光器

CCD検出器 (スペクトルを撮像)

HIDES@ 国立天文台岡山 天体物理観測所

CCDの膨張 ~1 m/s (CCDの0.02Kの温度変化; HARPS) など

検出器上における時々刻々の精度の良い波長目盛りが必要

参考:佐藤、神戸、安藤 2004

器械輪郭(IP)の変化

地球運動の補正

ある星の露出中の光量変化(30分)

地球運動の補正量 に<u>約3m/s</u>の違い

波長の物差し

地球大気の吸収線を 波長目盛りとして利用 (Griffin and Griffin 1973)

しかし、地球大気吸収線は 変動するのであまりよい 目盛りではない。 典型的な測定精度は 数10~数100m/s

ヨウ素ガス(I₂)吸収セル

- •Koch and Wohl(1984) 太陽で
- Butler (1987), Marcy and Butler (1992)
 5000-6000Åに無数(~10000本)の吸収線、安定
 → l₂の吸収線の位置決定精度 <1 m/s
- Butler et al. (1996), Valenti et al. (1995)
 解析手法の確立 星+I₂スペクトル、IPのモデル化
 → 星の視線速度測定精度 ~3 m/s(long-term)

器械輪郭の変動も補正

ヨードセル観測データの解析

 $I(\lambda) = k[A(\lambda)S(\lambda + \Delta \lambda)] * IP \quad (Butler et al. 1996)$

- A(λ): ヨウ素のテンプレート
- S(λ): 星のテンプレート
 (高分解能スペクトル)
- *I(\lambda)*: 星+ヨウ素のスペクトル
- IP : Instrumental Profile

 $\rightarrow v = c \Delta \lambda / \lambda$

Wavelength (Å)

- ドップラーシフトとIPがパラメータ
- IPは5~10個のガウシアンを組み合わせてモデル化
- スペクトルを数Å程度の数100個のセグメントに区切って解析

最先端の測定精度

- ·高SN(~200)が必要
- ・IPの変化、波長スケールの変化、視線 速度変化を分離するのが難しい

同時比較光源光取得法 (Simultaneous reference method)

- ELODIE、CORALIE、 HARPS(Mayor et al;スイスのグ ループ)
 - 2つの光ファイバー(星用、比較光 源ThAr用)で同時に分光器に光を 導く→入射光パターン安定化
 - 分光器は厳密な温度管理
 - ~0.001K(~1日、HARPS)
 - cross-correlationで、相対的な位置変化を導出
 - HARPS
 - short-term Th-Ar同士・・0.1 m/s 星・・・0.26 m/s (0.2 m/s 未同定)
 - long-term 星···1 m/s

Elle Yew <u>G</u> rapi	vice go gala Gervars	
	and the second sec	
	I S I TO I I S I S I S I S I S I S I S I S I S	
Zaom		
Dirject: b=/il>	The second s	and the second second
8: 21720		
v: bzer		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Velue: 19-		
2		
5.		
untos:		
Hin: [102		
Нес: 19/13		
lkipe: 1K		
Low: 19.		
High: 915		
Juno Set Cirl Levels		
Stale: 1:3		
	and the second	
-	· · · · · · · · · · · · · · · · · · ·	
	The second s	and the second second

HARPS (ESO 3.6m)

メリット: ・可視域全体が使える ・低SN(~50)でよい デメリット: 波長の基準を直接 スペクトルに埋め込まない

メリットでもある)

・高価な分光器

・高い技術が必要

Th-Arに代わる超高精度な波長基準(例:レーザー周波数コム)も開発されている

国立天文台岡山天体物理観測所 (Okayama Astrophysical Observatory; OAO) 188cm反射望遠鏡

可視高分散分光器(HIDES) 測定精度~2m/s(ヨウ素ガスセル)

国立天文台ハワイ観測所 8.2m反射望遠鏡(すばる望遠鏡)

可視高分散分光器(HDS) 測定精度~2m/s(ヨウ素ガスセル)

近赤外高分散分光器(IRD;開発中) 測定精度~1m/s(レーザーコム)

□ δ=-25°のためOAOからは限られた時期しか観測できず → AATとの協力
 □ HD4732cはこれまでに進化した中質量星周りで見つかった最も外側(4.6AU)の惑星
 □ 軌道安定性解析から惑星質量(軌道傾斜角)に上限(下限) → m_{b,c}<28M_{JUP} (*i*>5°)

次世代大型計画

CODEX@E-ELT Real Earth Twins Target: 2 cm/s

ESPRESSO@VLT Rocky Planets in HZ Target: 10 cm/s

地球型惑星探索用の超高精度高分散分光器が計画・検討中

TMT

惑星検出を妨げる

見かけの視線速度変化

太陽表面の 速度場

周期約5分、振幅数m/sの 細かな振動

地球の軌道運動による 視線速度変化(~10cm/s) より大きい

惑星検出にとっては"ノイズ" (恒星内部の情報を得る上 では有用;星震学)

恒星の表面現象:p-mode

恒星の表面現象:granulation

Image by Hinode

時間尺度に応じた時間間隔でデータを 取得・平均化することで<1m/sに低減可能 (Dumusque et al. 2011)

恒星の表面現象:spots

黒点の移動と吸収線のゆがみ

見かけの視線速度変動は黒点の 大きさ(カバー率)、自転速度に依る

太陽の場合、活動度最大のときで <sub>
σ_{RV}~50 cm/s (Dumusque et al. 2011)</sub>

長期変動

□ Granule
 熱い上昇流は冷たい
 下降流に比べて大きな
 面積を占める
 → blue shift

黒点のあるところでは 対流が抑制 →相対的にred shift

(e.g., Meunier+ 2010)

活動性(黒点数)と 視線速度は正の相関

太陽の黒点数の変化(11年周期)

NAOJ

活動性の長期変動による視線速度変化

…ではなかった

ローカルのトレンドの
除き方を変えると、
惑星の信号(3.2日周期)
が弱くなる(Hatzes 2013)
→惑星と結論づけるには
時期尚早

ハビタブルゾーン惑星:GJ581

生命が存在できる初の惑星発見?

ナショナルジオグラフィック公式日本語サイト 10月1日(金)16時30分配信

近隣恒星を調査中の天 文学者チームが、生命が 存在できる可能性のある 太陽系外惑星を初めて 発見したと発表した。この 惑星は岩が多く、大気と 温暖な領域、さらに生命 が存在するためには欠 かせない液体の水が存 在する可能性がある。

地球型惑星とされる太 陽系外惑星は既にいくつ か見つかっている。しか し、ワシントンD.C.にある カーネギー研究所の天 文学者ポール・バトラー 氏が2010年9月29日に Web上で開催されたメ ディア向け説明会で語っ

たところによると、新惑星は暑すぎも寒すぎもしない「ゴルディロックス・ゾーンと呼ばれる領域を 持つ初めての惑星だ。質量も(主星からの)距離も、表面に水が存在するために最適」だという。 赤色矮星グリーゼ581(Gliese 581)を約37日の周期で公転しており、グリーゼ581gと命名された。

ではない?

Fig. 5.— Phased reflex barycentric velocities of the host star due individually to the planets at 3.15 days, 5.37 days, 12.9 days, 37 days, 67 days, and 433 days from the all-circular fit of Table 2. Filled (red) hexagon points are from Keck while filled (blue) triangles are from HARPS.

Robertson et al. 2014

惑星b,c,eを除いた後の視線速度 変動が、Hα線強度の変動と強い 相関がある →恒星の活動性起源の可能性 →これを補正すると惑星g,d,fの 信号は消える

不安定な系は観測されない

Best-fit orbits of 2-Keplerian model (b:1.45AU, $21M_{JUP}$, c:2.01AU, $12M_{JUP}$; Niedzielski+ 2009) are unstable (Horner+ 2014) unless they are retrograde

12

14 16

1.8 2

Semi-Major Axis (AU)

22 24 26

28

BD+20 2457 (K2III, M∗=2.8M_☉)

Niedzielski+ 2009

まとめ

- ・恒星の視線速度変化を測る
 - 測定精度は基本的には光子量とスペクトルの形で決まる。しかし一般に器機的な系統誤差はそれより大きく、これを如何に抑えるかが鍵。
- ・見かけの視線速度変化
 - 恒星の表面活動は惑星検出を阻害、あるいは惑星を 誤検出させる。様々なタイムスケールの変動が存在。
- •惑星系の安定性
 - 複数惑星系では、観測データに最もよく合う軌道でも 惑星間の重力を考慮すると不安定な場合がある。
- 複数の検出法の併用も惑星検出には効果的