X線天文衛星「すざく」による超新星残骸G304.6+0.1(Kes17)の観測

鷲野 遼作 (京都大学大学院 理学研究科)

Abstract

近年の X 線天文衛星「すざく」による観測で、Mixed-Morphology (MM) 型の超新星残骸 (SNR) から過電 離プラズマが発見されている。我々は MM 型の SNR である G304.6+0.1(Kes17) に付随するプラズマの電 離状態を「すざく」を用いて測定した。その結果、過電離状態にあるという明確な証拠は得られなかった。 また、バックグラウンドを正確に評価することによって、Kes17 からの X 線放射は熱的な成分のみで構成さ れているということが分かった。さらに Ar、Ca の輝線を初めて検出することに成功し、元素のアバンダン スからはこの超新星爆発が重力崩壊型であったことを示唆する結果が得られた。

1 Introduction

超新星爆発では星の構成物質が飛び散り、星間物 質と衝突することによって衝撃波が形成される。衝 撃波は星からの噴出物や星間物質を加熱して高温の プラズマを形成する。この痕跡が超新星残骸 (Supernova remnant: SNR) である。多くの SNR はシェル 状に広がっているが、周辺環境の影響などでシェル 状ではない SNR もある。その形状によって SNR を 分類でき、1つに電波ではシェル状に広がり、X線 では中心に集中している Mixed-Morphology (MM) 型がある。近年、いくつかの MM 型 SNR から過電 離状態にあるプラズマが見つかっている (Kawasaki et al. 2002; Kawasaki et al. 2005; Yamaguchi et al. 2009; Ozawa et al. 2009; Ohnishi et al. 2011; Sawada & Koyama 2012; Uchida et al. 2012; Yamauchi et al. 2013)。 過電離プラズマとは電離過程 より再結合過程が優勢なプラズマで、従来の SNR の 進化理論では説明できない。今後より多くの過電離 SNR を発見し、観測することが過電離プラズマの進 化を系統的に理解するために必要である。

G304.6+0.1(Kes17) は銀河系内にある SNR で 1970 年に電波による観測で見つかった (Shavor & Goss 1970)。X 線では Combi et al. (2010) におい て、XMM-Newton を用いた観測で、MM 型である ことの判明や、Mg、Si、S の輝線の検出に成功してい る。さらに X 線の放射が熱的成分と非熱的成分から 構成されていて、熱的成分は電離平衡なプラズマによ るものであるという結果が出ている。しかし XMM- Newton の高いバックグラウンドではこれらを正確に 測定することは難しい。そこで今回はエネルギー分 解能に優れ、安定したバックグラウンドを持つ「す ざく」を用いて観測を行った。

2 Observations

我々は「すざく」に搭載されている X 線 CCD カ メラである XIS (X-ray Imaging Spectrometer) を用 いて 99.6 ks の観測を行った。観測に使われた XIS0、 XIS1、XIS3 の 3 台のうち、XIS0、XIS3 が表面照 射型 (Front-Illuminated: FI) で、XIS1 が裏面照射 型 (Back-Illuminated: BI) である。解析には XIS0、 XIS1、XIS3 のデータを使用したが、スペクトルには XIS0 と XIS3 のデータを足し合わせたものを表示し ている。

3 Data analysis

3.1 Image analysis

図1はXIS3によるKes17の0.3-10keVのX線イ メージである。実線の楕円がソース領域を表し、破線 で囲まれた部分がバックグラウンド領域を表してい る。ソース領域はXIS0、XIS1、XIS3で共通に取っ たが、バックグラウンド領域はXIS毎に較正線源を 含まないように注意して取った。

図 1: XIS3 による Kes17 の X 線イメージ (0.3–10 keV)。白の実線による楕円がソース領域、破線で囲まれた部分がバックグラウンド領域を表している。

すざくの特性を最大限に活かすためにはバックグ ラウンドの正確な評価が必要である。そこで物理的 描像に基づいてバックグラウンド領域のスペクトル をモデル化し、ソーススペクトルのフィッティングの 際にそのモデルを取り入れた。

バックグラウンドの成分としては、宇宙 X 線背 景放射 (the cosmic X-ray background: CXB)、前 景熱的放射 (foreground thermal emissions: FE) が ある。さらに Kes17 は銀河面上に位置しているの で、銀河面リッジ X 線放射 (the Galactic ridge Xray emissions: GRXE) の影響も大きい。この GRXE は Uchiyama et al. (2013) によって、低温プラズ マ (low temperature plasma: LP) と高温プラズマ (high temperature plasma: HP)、及び冷たいガス (cold matter: CM) で表されることが分かっている。 バックグラウンド領域のスペクトルがこれらバック グラウンドの成分

BGD = CXB + FE + GRXE (LP + HP + CM)

と SNR からの放射が漏れ出した成分で構成されてい るとしてモデル化を行った。(図 2)

図 2: バックグラウンド領域のスペクトルのモデル 化。カラーの実線が各成分からの寄与、黒の実線が 全ての成分の重ね合わせを表す。

3.3 Spectral analysis

ソース領域のスペクトルを前節で作成したバック グラウンドモデルと、SNR 由来の成分でフィッティ ングした。今までに検出されていた Mg、Si、S の輝 線に加えて、今回新たに Ar、Ca の輝線を検出する ことができた。

SNR 由来の成分は、星間物質 (Interstellar medium: ISM) が加熱されたプラズマと、爆発噴 出物が加熱されたイジェクタ成分で構成されてい て、非熱的な成分は必要ないということが分かった。 ISM 成分は低温で、全ての元素のアバンダンスが太 陽組成と等しい。この SNR において ISM 成分の寄 与は小さく、イジェクタ成分のプラズマが支配的で あることが分かった。

イジェクタ成分について、まずは非平衡プラズマ モデルでフィッティングした。このとき電離パラメー タが $\tau \sim 10^{13}$ cm⁻³s と大きくなり、電離平衡に近い 状態であることが分かった。そこで電離平衡モデルで フィッティングし直した (図3)。このとき $\chi^2/d.o.f =$ 79.67/78 $\simeq 1.02$ となった。さらに過電離モデルでの フィッティングを行った。結果としては $\chi^2/d.o.f =$ 75.65/77 $\simeq 0.98$ となり、電離平衡モデルに対して有 意な差は出なかった。この先の解析では電離平衡モ デルでのベストフィットを使用した。

図 3: ソース領域のスペクトルの電離平衡モデルによ るフィッティング。赤の実線が全ての成分の重ね合わ せを表す。

Discussion and Conclusion 4

今回の Kes17 の解析では、バックグラウンドを正 確に評価したことで、過去に報告されている非熱的 な X 線放射 (Combi et al. 2010; Gök & Sezer 2012) は存在せず、熱的成分のみからなることを発見した。

また、新たな輝線の検出に成功し、各元素のアバン ダンスに関しても今まで以上の精度で測定すること ができた。得られたアバンダンスからこの超新星爆 発が、Ia型なのか重力崩壊型なのかを推測すること ができる。Ia型と重力崩壊型の違いとして Si と Mg のアバンダンスに差があることが挙げられる。そこ で代表的な Ia 型と重力崩壊型の SNR について、過 去の観測による Z_{Si}/Z_{Mg} を調べた。今回の Kes17 で の値は $Z_{\rm Si}/Z_{\rm Mg} \simeq 0.58$ であるが、これは表1を参照 すると重力崩壊型の特徴に近いと言える。ただし重 力崩壊の後に残ると考えられているコンパクト天体 は、現時点では見つかっていない。

また Kes17 のプラズマの電離状態を精密に測定し たが、過電離状態であることの明確な証拠を得るこ とはできなかった。今後は、Kes17 と今までに見つ かっている過電離 SNR の周辺環境や親星の性質など を比較することで、どのような要因が過電離を引き 起こすのか検討する必要がある。

表 1: 代表的な SNR における Z_{Si}/Z_{Mg}

SN Type	SNR	$Z_{\rm Si}/Z_{\rm Mg}$
Ia	SN1006 $^{\rm 1}$	~ 10
Ia	Kepler 2	~ 50
重力崩壊	Cas A 3	~ 0.2
重力崩壊	Vela 4	~ 0.5
1 Uchida et al. 2013		

 2 Reynolds et al. 2007

 3 Bleeker et al. 2002

⁴ Yamaguchi and Katsuda 2009

Reference

- Bleeker, J., Vink, J., van der Heyden, K., et al. 2002, arXiv:astro-ph/0202207
- Combi, J. A., Albacete Colombo, J. F., Sánchez-Ayaso, E., et al. 2010, A&A, 523, A76
- Gök, F., & Sezer, A. 2012, MNRAS, 423, 1215
- Kawasaki, M. T., Ozaki, M., Nagase, F., et al. 2002, ApJ, 572, 897
- Kawasaki, M., Ozaki, M., Nagase, F., Inoue, H., & Petre, R. 2005, ApJ, 631, 935
- Ohnishi, T., Koyama, K., Tsuru, T. G., et al. 2011, PASJ, 63, 527
- Ozawa, M., Koyama, K., Yamaguchi, H., Masai, K., & Tamagawa, T. 2009, ApJ, 706, L71
- Reynolds, S. P., Borkowski, K. J., Hwang, U., et al. 2007, ApJ, 668, L135
- Sawada, M., & Koyama, K. 2012, PASJ, 64, 81
- Shaver, P. A., & Goss, W. M. 1970, Australian Journal of Physics Astrophysical Supplement, 14, 133
- Uchida, H., Koyama, K., Yamaguchi, H., et al. 2012, PASJ, 64, 141
- Uchida, H., Yamaguchi, H., & Koyama, K. 2013, ApJ, 771, 56
- Uchiyama, H., Nobukawa, M., Tsuru, T. G., & Koyama, K. 2013, PASJ, 65, 19
- Yamaguchi, H., Ozawa, M., Koyama, K., et al. 2009, ApJ, 705, L6
- Yamaguchi, H., & Katsuda, S. 2009, ApJ, 696, 1548
- Yamauchi, S., Nobukawa, M., Koyama, K., & Yonemori, M. 2013, PASJ, 65, 6