# 自作断熱消磁冷凍機による TES型X線マイクロカロリメータ動作環境の開発

神谷 賢太 (金沢大学大学院 自然科学研究科 数物科学専攻 修士1年)

### Abstract

X線マイクロカロリメータは入射光子1つ1つを素子の温度上昇として検出するX線検出器であり,100 mK 以下の極低温での動作により $E/\Delta E \sim 1000$ の優れたエネルギー分解能を実現する。中でも,超伝導遷移端 を高感度の温度計として利用する TES型X線マイクロカロリメータは更なる分光性能向上が見込める。我々 は,将来のX線天文衛星への搭載を念頭に置いて,TES型X線マイクロカロリメータと微小重力下で極低 温を実現できる断熱消磁冷凍機(ADR)を両者一体のシステムとして開発を行っている。自作 ADR 上でX 線パルスの検出を行い,5.9 keVのX線に対して半値全幅で  $3.8 \pm 0.4$  eV のエネルギー分解能を実現した。

## 1 はじめに

我々の研究目的は、宇宙に存在する高温・高エネ ルギー天体 (ブラックホール、銀河、銀河団など) が 放射している X 線を精密分光することで放射体の物 理・運動状態等を調べ、そこから宇宙の構造と進化 を観測的に解明していくことである。

X線精密分光における要求性能を満たす検出器と してX線マイクロカロリメータが挙げられる。X線 マイクロカロリメータは入射光子1つ1つを素子の 温度上昇として検出するX線検出器であり,100 mK 以下の極低温で動作させることで *E*/Δ*E* ~ 1000 の 優れたエネルギー分解能を実現する。図1にX線マ イクロカロリーメータの模式図を示す。吸収体にX 線光子が入射すると吸収体の温度が僅かに上昇し,そ の後は熱的にリンクした熱浴 (<100 mK) へ熱が流 れ,熱平衡状態に戻る。この時の僅かな温度上昇を 温度計で読み取ることで,X線光子のエネルギーを 測定する。



図 1: X 線マイクロカロリメータの模式図

カロリメータの原理的なエネルギー分解能は,素 子の温度揺らぎと温度計のジョンソンノイズで決ま り,半値全幅 (FWHM) で

$$\Delta E_{\rm FWHM} = 2.35 \sqrt{\frac{k_B T^2 C}{\alpha}} \tag{1}$$

と表される。ただし、 $\alpha$ は温度計の感度を示し、 $\alpha \equiv \frac{\text{dlogR}}{\text{dlogT}}$ である。吸収体の熱容量 Cは温度を下げるほ ど小さくなるので、この式は T、 $\alpha$ に強く依存する ことになる。従って、優れたエネルギー分解能を実 現するためには極低温 ( $T \sim 100 \text{ mK}$ )で動作させ、高 感度の温度計を使用することが必要となる。2015 年 打ち上げ予定の Astro-H 衛星には、温度計として半 導体サーミスタを用いた X 線マイクロカロリメータ が搭載される (Mitsuda et al. 2012)。

TES (Transition Edge Sensor)型X線マイクロカ ロリメータは,超伝導薄膜が常伝導から超伝導に遷 移する際の急激な抵抗変化(図2)を高感度の温度計 として利用しており, $\alpha \sim 100-1000$ 程度の感度をも つ。数 mK の遷移端内に動作点を安定に保つために 定電圧バイアスで動作させ,強い負の電熱フィード バックをかけて使用する (Irwin et al. 1995)。2010 年代打ち上げを目指す DIOS 衛星は TES 型X線マ イクロカロリメータを搭載予定であり (Ohashi et al. 2012),我々は JAXA 宇宙科学研究所や首都大学東 京のグループと協力して開発を進めている。



図 2: TES の抵抗-温度特性

人工衛星上で極低温環境をつくり出すには、断熱 消磁冷凍機 (ADR) が最も現実的である。ADR は冷 媒である常磁性体に磁場を印加してエントロピーを 制御することで冷却を行うため、重力依存性がなく 宇宙空間で使用可能である。また、温度安定度にも 優れる。冷却過程は、まず常磁性体が熱的に熱浴と 接した状態 (熱スイッチ On) で励磁する。この時発 生する磁化熱  $T_H(S_H - S_L)$  は熱浴に排熱し、等温に 保つ (図 3 右図 A  $\rightarrow$  B 過程)。次に、断熱状態にした 後に熱浴と切り離して (熱スイッチ Off) 消磁するこ とで目標温度まで下げる (図 3 右図 B  $\rightarrow$  C 過程)。そ の後は等温を保つように消磁を行う (図 3 右図 C  $\rightarrow$ D 過程)。この時の吸熱量は  $T_L(S_H - S_L)$  で与えら れる。カロリメータの動作はこの過程中に行う。



図 3: ADR の模式図 (左図), エントロピー-温度曲線 における断熱消磁冷却サイクル (右図)

TES は超伝導遷移端を利用するため、磁場の影響 を受けやすい。一方で、ADR は冷却サイクルにおい て強い磁場を発生させる。従って、TES カロリメー タと ADR を一体のシステムとして動作環境を整え ることが重要であると考え、開発を進めてきた。そ の結果、5.9 keV の X 線に対してエネルギー分解能  $\Delta E = 3.8 \pm 0.4 \text{ eV}$  (FWHM)を実現できるようになっ た。本論文では我々の ADR と TES カロリメータ動 作環境について述べる。

# 2 自作断熱消磁冷凍機 (ADR)

図4に我々の研究室で使用している ADR クライ オスタットの外観と構造図を示す。ADR クライオス タットは直径 40 cm ×高さ 90 cm の小型デュワー (300 K の真空容器), 2 重の蒸気冷却型放射シール ド (VCS: Vapor-Cooled Shield), He 温度シールド, 容量 7 L の He タンクで構成されている (Shinozaki et al. 2012)。He タンクへの侵入熱を抑えるために, 各シールドの間には多層断熱材 (MLI: Multi Layer Insulator)を挿入しており, 7 L の液体 He を 2 日間 保持可能である。



図 4: クライオスタットの外観と模式断面

He 温度ステージには自作 ADR や TES カロリメー タ,超伝導量子干渉計 (SQUID)が搭載されている。 図 5 に He 温度ステージの様子,図 6 にその模式図 を示す。ADR は超伝導マグネット,磁性体カプセル (ソルトピル),ヒートスイッチで構成されている。超 伝導マグネットに最大電流9 A 印加時に3 T の磁場 が発生するため,磁場対策としてマグネット周囲に 12 mm 厚の強磁性体 (SiFe)シールドを設けている (Hishi et al. 2014)。これにより,マグネットからの 漏れ磁場を地磁場程度まで抑えることができる。さ らに,TES カロリメータを搭載した検出器ステージ と SQUID 周囲のそれぞれに超伝導体と強磁性体の 2 重磁気シールドを設けている。

磁性体カプセルはケースの製作,結晶の成長とも にインハウスで行っている。常磁性体の結晶には磁 気モーメントが大きく,磁気相転移温度が100 mK より十分に低い (0.026 K) 鉄ミョウバンを採用してい

#### 2014 年度 第 44 回 天文・天体物理若手夏の学校



図 5: 自作 ADR を設置した He 温度ステージ



図 6: ADR と He 温度ステージの模式図

る。図7に磁性体カプセルの断面を示す。結晶内の 熱伝導をよくするためにケース内部には金線を這わ せ (359×2=718本),両側の銅リンクには金メッキ を施している。筒と蓋にはステンレスを使用し,溶 接により結晶を密封している。検出器ステージ側無 負荷の状態で,熱浴温度 1.7 K(減圧 He 温度)で断 熱消磁を行ったところ,最低到達温度 40 mK 以下, 80 mK 以下での保持時間 20 時間以上という性能を 示した。TES カロリメータを動作させる上では十分 な冷却性能である。

### **3 温度制御**

温度制御の模式図を図8に示す。検出器ステージ上 に設置した温度計 (RX202A)を常にモニタし,PID 制御によって超伝導マグネットに流す電流を制御し ている。これにより検出器ステージ上では6 µK rms の温度ゆらぎが実現できている。



図 7: 磁性体カプセルの断面



図 8: 温度制御の模式図

# 4 TES **カロリメータ動作**

### 4.1 素子のセットアップと駆動,信号読み 出し

TES カロリメータ素子は<sup>55</sup>Fe 線源,温度計ととも に検出器ステージである銅板に固定し (図 9),銅製 のカバー,超伝導体 (アルミまたはニオブ)と強磁性 体 (クライオパーム)の2 重磁気シールドを被せて, 磁性体カプセルからのばしたコールドフィンガーの 先端にマウントする。



図 9: 検出器ステージのセットアップ

TES カロリメータの動作回路では,TES の抵抗 に対して十分に小さい抵抗値をもつシャント抵抗 *R*。 を TES と並列にして定電流を流すことで擬似的に定 電圧バイアスを表現している。我々の実験での典型 2014年度第44回天文・天体物理若手夏の学校

的な値は、TESの常伝導抵抗  $\simeq 100 \text{ m}\Omega$ 、動作抵抗  $\simeq 10 \text{ m}\Omega$ 、 $R_s \simeq 2 \text{ m}\Omega$ 、寄生抵抗  $\simeq 1 \text{ m}\Omega$  である。

X線光子が入射するとTESの抵抗が変化し、定電 圧バイアスされたTESを流れる電流が変化する。こ の電流変化をSQUIDで読み出している。SQUIDと シャント抵抗は発熱の影響を避けるため、He 温度ス テージに設置している。

TES カロリメータ, SQUID の駆動部と信号読み出 し部の模式図を図 10 に示す。トリガのかかったパル ス波形と入力のない時のノイズ波形をそのまま取り 込み,パソコン上で最適フィルタ処理を行うことで 波高値を求める。計測装置とクライオスタットの接 続については小竹 (2014) で述べている。



図 10: 駆動部と信号読み出し部の模式図

#### 4.2 エネルギー分解能評価

動作環境の評価に使用した TES 素子は首都大で製 作されたもので 4 × 4 の 16 ピクセルでアレイ化され ており,各単素子は 200  $\mu$ m 角の Ti (超伝導金属)と Au (常伝導金属)の二層薄膜の上に 120  $\mu$ m 角の Au 吸収体がのっている構造をしている (図 11)。TES 素 子の上には  $\phi$ 200  $\mu$ m の穴が開いたコリメータが設置 されている。首都大希釈冷凍機上での測定で 5.9 keV の X 線に対して 2.8 eV (FWHM)の性能が確認され ている (Akamatsu et al. 2009)。

上記の素子を用いて性能評価を行った。その結果, 5.9 keVのMn k $\alpha$ 線に対して,  $3.8\pm0.4$  eV (FWHM) という値が得られた (図 12)。 $E/\Delta E \sim 1500$  であり, X 線精密分光を行う上では十分な性能を自作 ADR 上で実現することができた。しかしながら,素子本 来の性能は 2.8 eV であり,更なる改善の余地が残さ れている。



図 11: TES 素子



図 12: 得られたエネルギースペクトル

# 5 まとめと今後

我々は自作 ADR 上で TES 型 X 線マイクロカロリ メータの動作環境を整え, 5.9 keV の X 線に対して エネルギー分解能  $3.8 \pm 0.4$  eV(FWHM) を実現し, X 線精密分光を行う上で十分な性能を達成した。ま だ改善の余地は残されているものの,希釈冷凍機に 近い性能を実現できている。

今後は更なる分光性能向上を目指すとともに,地 上プラズマ実験への応用を視野に入れ,ADR クライ オスタット外部から X 線照射を行えるように改良を 進めていく。

### Reference

K.Mitsuda et al. 2012, JLTP 167, 795.

K.D.Irwin et al. 1995, ITAS 5, 2690.

T.Ohashi et al. 2012, APIE 8443, 844319

K.Shinozaki et al. 2008, SPIE 7011, 70113<br/>R  $\,$ 

U.Hishi et al. 2014, JLTP 176, 1075

H.Akamatsu et al. 2009, AIPC 1185, 191

小竹美里 2014, 本収録