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Stabilization of linear higher derivative gravity with constraints

秋田　悠児 (立教大学　理論物理学研究室)

Abstract

Linear instability in non-degenerate higher derivative theories, which is known as Ostrogradski’s in-

stability, can be removed by the addition of constraints. These constraints must reduce the dimension

of original phase space. In other words, instabilities are removed only if constraints reduce the dy-

namical degrees of freedom(d.o.f) from original ones. Also, theories with curvature invariants such as

RµνR
µν , RµνρσR

µνρσ, CµνρσC
µνρσ , have the Ostrogradski’s instability because they contain higher

derivatives of the metric with respect to time.

I will start with a review about the stabilization of higher derivative gravity models. I consider the

Lagrangian of the form L =
√
−g(R − 2Λ + αR2 + βRµνR

µν) . First, I give the second-order action

for metric perturbations on a general background. Then, I focus on the Minkowski background, and

demonstrate how the instabilities appear in each type of perturbations (i.e. scalar, vector, and tensor

modes.) by constructing the Hamiltonian. I show that those instabilities can be removed by impos-

ing constraints on the theory. Finally, I will give some comments on cosmological implications of the

constrained theory.

1 Introduction

Non-degenerate higher derivative theories suffer

from the Ostrogradski’s instability. The state-

ment of Ostrogradski’s instability is that we cannot

avoid appearing the ghost in non-degenerate higher

derivative theories. However, several theories such

as f(R) gravity evade this instability while they

contain higher derivatives of the metric with re-

spect to time. This is because they are degenerate,

which means that they are constrained. Unstable

degrees of freedom of f(R) and GR is removed by

gauge constraint. In general, non-degenerate higher

derivative theories are inevitably unstable.

We consider the following action

S =
M2

Pl

2

∫
d4x

√
−g

×
[
R− 2Λ + αR2 + βRµνR

µν
]
. (1)

First, we show that this theory is unstable, i.e. , the

ghost will appear in this theory. Then, we stabilize

the theory by adding suitable constraints which re-

duce the dimension of the phase space.

2 Higher derivative gravity:

quadratic action

We consider the Lagrangian which contains the

quadratic curvature invariant RµνR
µν .

L√
−g

=
M2

Pl

2

[
R− 2Λ + αR2 + βRµνR

µν
]
. (2)

Our first purpose is to calculate the action up to

the quadratic order in the metric perturbation hµν ,

which is given by

gµν = ḡµν + hµν . (3)

We obtain Ricci tensor, Ricci scalar,and Einstein

tensor in linear order as follows.

RL
µν =

1

2

(
∇̄ρ∇̄µh

ρ
ν + ∇̄ρ∇̄νh

ρ
µ

−2hµν + ∇̄µ∇̄νh
)
,

RL = ḡµνδR
L
µν − R̄µνhµν ,

GL
µν = δRL

µν − 1

2
ḡµνδR

L − Λhµν .
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Note that, the indices are raised and lowered by

back ground metric ḡµν . Assuming that constant

curvature background of either Minkowski, de Sit-

ter, Anti-de Sitter, the Weyl tensor vanishes, we

should thus compute the linear order term of weyl

tensor to calculate the action up to quadratic order.

Then, we obtain the Second order action,

S = −M
2
Pl

4

∫
d4x

√
−ḡhµν[

(1 + 8αΛ +
4

3
βΛ)GL

µν

+(β + 2α)(ḡµν2− ∇̄µ∇̄ν + Λḡµν)R
L

+β(2GL
µν − 2Λ

3
ḡµνR

L)

]
. (4)

In this equation, we omit δ so δR is denoted as RL.

3 Metric perturbations

around Minkowski

background

and instabilities

Metric perturbations are given by

ds2 = −(1+2A)dt2+2(B,i−Si)dx
idt

+
[
(1−2ψ)δij+2E,ij+2F(i,j)+hij

]
dxidxj .

Here, A, B, E, and ψ are scalar perturbations.

Si and Fi are vector perturbations and are trans-

verse. hij is tensor perturbation and is transverse

and traceless. We will consider each types of per-

turbations in the following sections.

3.1 Tensor perturbation :

Helicity-2 sector

In this section, we consider the tensor perturba-

tion, which has helicity-2. Using Eq. (4), (5), we

obtain

S =
M2

Pl

2

∫
d4x

[
β
{
(ḧij)

2 + 2ḣij∇2ḣij + (∇2hij)
2
}

+(ḣij)
2 + hij∇2hij

]
. (5)

Notice that only the term which is proportional to β

survives. This action contains higher order deriva-

tive with respect to t. Let us discuss the instabil-

ity of this system by constructing the Hamiltonian.

The choice of canonical variables are

h
(1)
ij ≡ hij ↔ πij = 2ḣij + β(−2

...
h

ij
+ 4∇2ḣij) ,

h
(2)
ij ≡ ḣij ↔ pij = 2βḧij .

Using these definitions, we can construct the Hamil-

tonian by Legendre transform:

H =
M2

Pl

2

∫
d3x

[
1

4β
pijpij + πijh

(2)
ij − 2βh

(2)
ij ∇2h

(2)
ij

−h(2)ij h
(2)ij − β∇2h

(1)
ij ∇2h(1)ij − h

(1)
ij ∇2h

(1)
ij

]
. (6)

This Hamiltonian is linearly dependent on πij , and

therefore the Hamiltonian is not bounded from be-

low, which means that the tensor perturbation of

the theory is unstable.

3.2 Scalar perturbation :

Helicity-0 sector

We can obtain the quadratic action of scalar per-

turbations as follows:

S =
M2

Pl

2

∫
d4x

[
(−6Ψ̇2 − 2Ψ∇2Ψ+ 4Ψ∇2Φ) (7)

+ 4 (β + 3α) (3Ψ̈2 + 4Ψ̇∇2Ψ̇ + 2Ψ̈∇2Φ)

+ 2 (3β + 8α)
(
∇2Ψ

)2
+ 2(β + 2α)

(
∇2Φ

)2
−4(β + 4α)∇2Ψ∇2Φ

]
.

Here, Ψ and Φ are the gauge invariant perturbations

defined by

Φ ≡ A+ Ḃ − Ë , (8)

Ψ ≡ ψ . (9)

Φ is non-dynamical since Φ̇ does not appear in the

action. This means that variation with respect to Φ

gives a constraint. The choice of canonical variables

are

Φ ≡ Φ ↔ pΦ = 0 , (10)

Ψ ≡ Ψ ↔ pΨ =
δS

δΨ̇
, (11)

χ ≡ Ψ̇ ↔ pχ = 8(β + 3α)(3Ψ̈ +∇2Φ) . (12)
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Then, we have the Hamiltonian of the form

H =
M2

Pl

2

∫
d3x

[
pΨχ+

p2χ
48(β + 3α)

− pχ∇2Φ

3

+(6χ2 + 2Ψ∇2Ψ− 4Ψ∇2Φ)

−16(β + 3α)χ∇2χ− 2(3β + 8α)(∇2Ψ)2

4(β + 4α)∇2Ψ∇2Φ
2β

3
(∇2Φ)2

]
. (13)

There is one constraint derived from variation with

respect to Φ for this Hamiltonian. Substituting this

constraint to the Hamiltonian, we obtain the re-

duced Hamiltonian of the form

HR =
M2

Pl

2

∫
d3x

×
[
pΨχ+

1

β
pχ

{
1− (β + 4α)∇2

}
Ψ

+
β + 2α

16β(β + 3α)
p2χ + 6χ2−16(β + 3α)χ∇2χ

+
6

β
Ψ2 − (10 +

48α

β
)Ψ∇2Ψ

+
32α(β + 3α)

β
(∇2Ψ)2

]
. (14)

One can see that the instability appears also in the

case of scalar perturbations.

4 Stabilization of the theory

by adding constraints

In this section, we explain how the theory is sta-

bilized. First, we discuss the tensor perturbation.

Adding the constraint to Eq. (5) by using the La-

grange multiplier λij , we obtain the quadratic ac-

tion of the form

S =
M2

Pl

2

∫
d4x

[
β
{
(ḧij − λij)

2 + 2ḣij∇2ḣij

+(∇2hij)
2
}
+ (ḣij)

2 + hij∇2hij

+4βλij∇2hij
]
. (15)

Then, we construct the Hamiltonian. The choice

of canonical variables are

h
(1)
ij ≡ hij ↔ πij = 2ḣij + β(−2

...
h

ij
+ 4∇2ḣij + 2λ̇ij) ,

(16)

h
(2)
ij ≡ ḣij ↔ pij = 2β(ḧij − λij) , (17)

λij ≡ λij ↔ pijλ = 0 . (18)

Using these definitions, the Hamiltonian is given of

the form

H =
M2

Pl

2

∫
d3x

[
πijh

(2)
ij +

1

4β
pijpij

−h(1)ij(β∇2∇2 +∇2)h
(1)
ij − qij(1 + 2β∇2)qij

+λij(pij − 4β∇2h
(1)
ij )

]
. (19)

Eq. (18) is the primary constraint. This constraint

is satisfied only on the hypersurface in the phase

space. We obtain the secondary constraints by im-

plying that primary constraint holds for arbitrary

time, i.e., Poisson bracket between primary con-

straint and the Hamiltonian should be 0. Then,

we obtain a secondary constraint. Since this sec-

ondary constraint holds also for arbitrary time, we

obtain the another secondary constraint, and so on.

Finally, we obtain the secondary constraints as fol-

lows.

ϕ1 : pλij ≈ 0 , (20)

ϕ2 : pij − 4β∇2hij ≈ 0 , (21)

ϕ3 : πij − 2h
(2)
ij ≈ 0 , (22)

ϕ4 : 2(β∇2∇2 +∇2)h
(1)
ij − 1

β
pij + 2(−1 + 2β∇2)λij ≈ 0 .

(23)

Here, ≈ is ’weak equality’, which means that this

equation is satisfied only on the hypersurface. Sub-

stituting these constraints to Eq. (15), we obtain

the reduced Hamiltonian

HR =
M2

Pl

2

∫
d3x

[
1

4
πij(1− 2β∇2)πij

+h(1)ij(−∇2 + 3β∇2∇2)h
(1)
ij

]
. (24)

The reduced Hamiltonian is bounded from below,

which means that the theory does not contain the

ghost. We succeeded the stabilization of the theory.
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Taking the same approach as tensor perturbation,

we can discuss the scalar perturbations. We start

with the action which contains the Lagrange multi-

plier λ. the action is given of the form

S =
M2

Pl

2

∫
d4x

[
(−6Ψ̇2 − 2Ψ∇2Ψ+ 4Ψ∇2Φ) (25)

+4 (β + 3α) (3Ψ̈2 + 4Ψ̇∇2Ψ̇ + 2Ψ̈∇2Φ)

+2 (3β + 8α)
(
∇2Ψ

)2
+ 2(β + 2α)

(
∇2Φ

)2
−4(β + 4α)∇2Ψ∇2Φ+ 32(β + 3α)λ∇2Ψ

+12(β + 3α)(λ2 − 2Ψ̈λ− 2

3
λ∇2Φ) + CλΨ)

]
.

The choice of canonical variables are

Φ ≡ Φ ↔ pΦ = 0 , (26)

Ψ ≡ Ψ ↔ pΨ =
δS

δΨ̇
, (27)

χ ≡ Ψ̇ ↔ pχ = 8(β+3α)
[
3(Ψ̈−λ)+∇2Φ

]
,(28)

λ ≡ λ ↔ pλ = 0 . (29)

Eq. (26), (29) are primary constraints. We obtain

the secondary constraints as follows.

ϕ1 : pΦ ≈ 0 , (30)

ϕ2 : pλ ≈ 0 , (31)

ϕ3 : pχ − CΨ− 32(β + 3α)∇2Ψ ≈ 0 , (32)

ϕ4 : ∇2

[
pχ
3
+4Ψ−4(β+4α)∇2Ψ+

4β

3
∇2Φ

]
≈ 0 ,

(33)

ϕ5 : pΨ + (12 + C)χ ≈ 0 , (34)

ϕ6 :
(12 + C)pχ
24(β + 3α)

+ 2(6 + α)λ+ 32(β + 3α)∇2λ

+4(3β + 8α)∇2∇2Ψ− 4(β + 4α)∇2∇2Φ

−4∇2Ψ− C

3
∇2Φ ≈ 0 . (35)

We can construct the Hamiltonian, and substitute

these constraints. Then we obtain the reduced

Hamiltonian of the form

HR =
M2

Pl

2

∫
d3x[

−pΨ
(12 + C)2

{
(6 + C) + 16(β + 3α)∇2

}
pΨ

+
1

β

{
(6 + C) +

C2(β + 2α)

16(β + 3α)

}
Ψ2{

(22 +
48α

β
) +

C

β
(3β + 4α)

}
Ψ∇2Ψ

+
32(β + 3α)(β + α)

β
(∇2Ψ)2

]
. (36)

This Hamiltonian is also bounded from below.

5 Conclusion and

future outlook

First, we perturb the metric around the

Minkowski space, and show that the theory is unsta-

ble by calculating the quadratic action to the metric

fluctuations. Then, we removed those instability by

adding suitable constraints.

The future task is improving the application to

inflationary fluctuations in higher derivative grav-

ity.
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