X線でさぐる銀河の 重元素組成

小波 さおり (首都大学東京)

自己紹介

- 小波 さおり (首都大)
- 職:日本学術振興協会 PD
- 東京理科大学大学院博士過程卒
- 専門:X線天文学

(データ解析、次期X線衛星ASTRO-Hチームメンバー)

- むかし、夏の学校の事務局やってました

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

NASA/WMAP

 $(1) \quad (2)$

-番星の誕生!

宇宙初期に生成
 ②星内部での核反応、
 または星が死ぬ時に生成

元素組成は過去の情報を

もっている

元素組成は、宇宙の化学進化をさぐるよい手がかり

星内部で起こる核融合反応によって元素が生成される

星内部で起こる核融合反応によって元素が生成される

Ⅰa型超新星爆発
 ◆ 軽い星 (< 8 M_{sun})
 ◆ 白色矮星へ他の星 (連星系)からの質量降着により、チャンドラセカール質量を超えると爆発
 ◆ Feを多く供給する

重力崩壞型超新星爆発

- ◆重い星 (>8 M_{sun})
- ◆ Fe中心コアの重力崩壊に

よる爆発

◆ O, Ne, Mgを多く供給する

星の質量によって供給する元素が異なる

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

X線で観えるもの

楕円銀河 (M86 M84)

X線~ 107 K 可視光~ 103 K 星、ガス 高温プラズマ (ISASニュース 2002.2)

- 可視光より広がった放射
- 可視光と異なる物理量を反映

X線の放射メカニズム

放射媒体 (主に銀河/銀河団) … 衝突電離平行状態の高温プラズマ

 熱的制動放射…プラズマ中の自由電子がイオンとの 相互作用により放出される放射
 電子のエネルギー分布がボルツマン分布の ため、連続的な成分
 ビックトの

イオン

エネルギー (keV)

放射媒体 (主に銀河/銀河団) … 衝突電離平行状態の高温プラズマ

2. 輝線放射…プラズマ中の自由電子がイオンの電子を 衝突励起することにより起こる放射

なぜX線で元素組成を探るか

 ◆他の波長より物理過程がシンプル
 > 放射過程がシンプル (熱平衡と見なせ、放射は 熱制動放射と元素の輝線の足し合わせ)
 > 輝線強度の計算がシンプル (X線のエネルギー 帯域では、多くの元素が水素状 or ヘリウム状 イオンになっている)

◆ 最低限必要な元素が全て検出できる
 ≻ X線スペクトルには、O, Ne, Mg, Si, Feの輝線
 が見える

X線で観るために

● X線は地上まで届かない

(ASTRO-HのHPより)

日本のX線天文衛星

はくちょう (1979-85)

てんま (1983-88)

ぎんが (1987-91)

あすか (1993-01)

次期X線天文衛星 ASTRO-Hへ!! (2015年 打ち上<u>げ予定)</u>

X線天文衛星「すざく」

- ◆日本で5番目のX線天文衛星
 ≫現在運用中
 ◆エネルギー帯域 (0.2-700 keV)
 >1 eV ~ 1240 nm ~ 104 K
- ◆ 搭載されている検出器 (1部のみ)
 > X線CCDカメラ XIS (0.2-12 keV)
 > 低いX線バックグラウンド
 > シャープな検出器応答関数
 ◇ 酸素やマグネシウムの輝線を検出できるように!!

現在稼働中のX線天文衛星

(米, 1999)

Chandra XMM-Newton すざく (欧, 1999)

(日,2005)

現在稼働中のX線天文衛星

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

銀河			
	楕円銀河	渦巻銀河	(不規則銀河)
	©SDSS	O	ASA
主な星	古い	若い	若い
冷たいガス (星のもと)	ほぼない		多い
星形成	していない	している	爆発的にしている
高温ガスの起源	小中質量星からの質量放出 + 現在起こっているSN la	恒星現在起	≧のガス + こっているSN

- 星形成率が低い
- ほとんどの星が小中質量星で古い
- X線を放射する高温プラズマは星よりも より広い領域に分布

星の質量放出 + 現在起こっているSN la (O, Ne, Mg, Si, Fe) (Fe)

> 星のガスは、その星ができた当時のガス

- 元素もその当時の元素
- 元素組成比は当時の星形成の情報をもっている

	手法	Fe
高温プラズマ	これまでのX線衛星 (ASCA, XMM, Chandra)による観測	~1太陽組成
星 + 現在のSN Ia	可視光観測 + 現在のSN laの発生頻度	~2太陽組成

「星と現在のSN laで生成された量」が「高温プラズマで測定された量」と矛盾

O/Fe, Mg/Fe, Si/Feの組成比

	Mg/Fe, Si/Fe	O/Fe
高温プラズマ (X線)	~1太陽組成	~ 0.5 太陽組成
星 (可視光)	>1 太陽組成 (II型 like)	

Mg/Fe, Si/Fe:
Feの組成を考えると星の 組成とconsistent
O/Fe:
酸素だけ低い?

可視光観測とX線観測の補完性

元素組成、組成比ともに速度分散のに比例

可視光とX線による観測の比較

(r_e: 可視光で全体の光度の半分が含まれる半径)

	対象	測定範囲	メリット	デメリット
可視光	星	< r	星だけの組成を 測定できる	1. 範囲が中心領域のみ 2. 元素組成の見積もりが 星の年齢に大きく依存
X線	高温プラズマ	~	銀河全体を 測定できる	星と現在のSN laの足し合わされた元素組成を測定

(Konami+14) 天文月報7月号

鉄が少ない? O/Feなどの元素組成は?

- 低バックグラウンドで 酸素/マグネシウム輝線に 高い感度をもつ「すざく」 で調査
- 楕円銀河13天体、 SO銀河4天体を解析

NGC1399 & NGC1404

NGC4125

NGC1553

NGC2300

NGC4636

NGC4649

NGC4697

NGC4472

NGC5846

元素組成 結果

*全ての銀河の元素組成(O, Ne, Mg, Si, Fe)はおおよそ1 太陽組成 *形態 (楕円 vs レンズ状)や環境 (銀河団中 vs 外)でも違いは見られない

結果 一 元素組成比

*全ての銀河の元素組比 (O/Fe, Mg/Fe, Si/Fe)はおおよそ1 太陽組成 *形態 (楕円 vs SO)や環境 (銀河団中 vs 外)でも違いは見られない

現在起こっているSN laから供給されたFe

	Fe (太陽組成)	手法
高温プラズマ (現在のSN la分)	~ 0.8 (~0.56)	X線スペクトル解析 全体の重み付き平均
現在のSN la	2.8 – 13.9	可視光観測 + 現在のSN laの発生頻度 (可視光観測)から計算

→ 高温プラズマの鉄の量が少ない?

* 高温プラズマに十分混ぜられる or 暖められる前 に銀河間空間に逃げた?

- Tang & Wang (2010)によるシミュレーションで はアウトフローにより外側へ逃げていくFeを再現

二〉銀河からの元素供給を示唆

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

銀河			
	楕円銀河	渦巻銀河	「(不規則銀河)
	©SDSS	ON.	ASA ©NASA
主な星	古い	若い	岩い
冷たいガス (星のもと)	ほぼない		多い
星形成	していない	している	爆発的にしている
高温ガスの起源	小中質量星からの質量放出 + 現在起こっているSN la	恒星現在起	星のガス + こっているSN

青:高温プラズマ その他:星、ガス

爆発的に星を作る 二〉次々に星が爆発する 二〉ガスが外に吹き出す スターバースト銀河は銀河間空間に物質を供給している有力候補

スターバースト銀河 M82

「すざく」イメージ (0.3–3 keV)

M82の重元素組成比

すべてのアウトフロー領域で重元素組成比が SN CCに近い値を示した

他の星形成銀河の重元素組成比

拡散された元素の行方 - 銀河団の元素組成比 -

「すざく」で観測された Fornax銀河団 (Matsushita+07)

- 銀河団の元素組成は1990年代 から測定されている

XMM, すざく衛星により、
 銀河団に付随する高温プラズマから多量の元素 (O, Ne, Mg, Si, S, Fe)が検出

元素量、元素組成比から銀河団、 宇宙の化学進化、形成史に迫る

銀河団の元素組成比 (Sato+07)

- 各銀河団の重元素組成比を求め、II型 (CC型)とla型超新星爆発の 回数比を計算した
- II型/Ia型の回数比はどの銀河団でもおよそ3.5となった

銀河団外縁部の元素測定 (Werner+13)

「すざく」で観測された ペルセウス銀河団 (Urban+14)

- ペルセウス銀河団を外側 まで観測
 - 鉄の分布を~ 1.5 Mpc (~r₂₀₀)
 まで測定し、ほぼ一様に
 分布していることを解明
 銀河の分布と一致していな
 ことから、銀河団が形成さ
 れる前に元素が拡散された?
 (Werner+13)

銀河団中の銀河と元素分布の関係 (Gu+13)

- 高温プラズマ中の鉄が銀河光度に対してより外側に広がっている
- 銀河団形成初期は一様に分布していた銀河が、形成後、元素をば らまきながら中心まで落ちてきた?
- 銀河と高温プラズマが相互作用

まとめと今後の課題

- ・銀河から銀河団への重元素供給が間接的、直接的に示されてきた
- ・銀河団には多量の重元素が含まれ、その分布や供給の割合(SN)はわかってきた
- それらがいつ、どのように供給され、現在の構造
 に形成してきたかはまだ明らかになっていない

本日のアウトライン

- 1. なぜ元素か
- 2. なぜX線か
- 3. X線でさぐる銀河の元素組成
- 4. 銀河から銀河団への元素拡散
- 5. 次期X線衛星でさぐる宇宙の元素合成史

ASTRO-H

イラスト 池下章裕氏/提供 JAXA

次期X線天文衛星 ASTRO-H

はくちょう (1979-85)

てんま (1983-88)

ぎんが (1987-91)

あすか (1993-01)

次期X線天文衛星 ASTRO-Hへ!! (2015年 打ち上げ予定)

マイクロカロリメータ SXS - 従来のX線衛星搭載の分光器に比べ、 圧倒的な高エネルギー分解能 (7 eV)

マイクロカロリメータ SXS

<u> 従来のX線街星搭載の分光哭に比べ</u>

マイクロカロリメータ SXS

<u> 従来のX線街 足 技 載 の 分 半 哭 に 比 べ</u>

小型衛星DIOS (Diffuse Intergalactic Oxygen Survey)

- バリオンの半分以上は大規模構造に付随 する「温かい」ガス
- 未だ観測されていない (ダークバリオン)

(Yoshikawa+01)

小型衛星DIOS (Diffuse Intergalactic Oxygen Survey)

Effective Area	200 cm (> 100 cm	× 2.6 arcmin ² × 2.6 arcmin ² (Lakei+11) (Lakei+11) - 10 (2=0.033) (2=0.033) (2=0.033) (2=0.033)
F. o. v	50' diameter	
SΩ	~ 150 cm	Compt 20 Com
Angular resol.	3' (16 x 16 pix)	
Energy resol.	2 eV (FWHM)	10 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Energy (keV)
		DIOS観測のシミュレーション結果
Energy range	0.3 – 1.5 keV	実際の 分布 DIOS 2年分
Mission life	> 5 yr	
大規模構造の 3次元マッピングへ!!		(z~0.2, Takei+11)

まとめと今後の課題

- ・銀河から銀河団への重元素供給が間接的、直接的に示されてきた
- ・銀河団には多量の重元素が含まれ、その分布や供給の割合(SN)はわかってきた
- それらがいつ、どのように供給され、現在の構造
 に形成してきたかはまだ明らかになっていない

C→ASTRO-H, DIOSで元素/エネルギー供給や、 構造形成の現場の直接検出が可能に!!