超大質量星の重力崩壊に伴う爆発現象

松本 達矢 (京都大学大学院 理学研究科)

Abstract

超大質量星(Supermassive star:SMS)は初期宇宙における超大質量ブラックホール(Supermassive black hole:SMBH)の種 BH を提供する天体として、その進化・形成が盛んに議論されている天体である。最近 の研究によって、SMS の進化過程は急速に理解が進んだと言える。しかし、SMS は初期宇宙に存在する天 体であるため、観測が非常に難しく、これらの理論は観測的検証がほとんど行われていない。本研究では、 SMS の観測可能性として、SMS の重力崩壊に伴う爆発現象に着目する。爆発現象としてはガンマ線バースト (Gamma ray burst:GRB)のような jet を伴った爆発を考察する。現在までに、SMS の進化計算から得ら れている SMS の密度分布を用いて、SMS 中での jet propagation を数値計算した結果、jet breakout する ことが分かった。この結果をもとにして、SMS burst の prompt emission や afterglow などの観測可能性・ 特徴などを議論することが可能である。

1 Introduction

銀河は、恒星に次ぐ重要な天体の基本単位である。 銀河の特徴として、ほとんどの銀河中心には質量 $10^{6-9} M_{\odot}$ ものSMBHが存在することが挙げられる。 SMBHの起源は、初期宇宙に恒星の重力崩壊で形成 された恒星質量 BH がガス降着により質量を獲得し たものだと考えられている。しかし、近年、 $z \simeq 7$ の 初期宇宙においても質量 10⁹M_☉ の SMBH が観測さ れた。初期宇宙ではガス降着によって BH が成長す るには時間が足りず、この SMBH の起源は謎に包ま れている。現在、初期宇宙の SMBH の形成シナリオ として有力視されているのが、SMS の重力崩壊によ る形成シナリオである。SMS とは、宇宙初期に形成 される質量 $10^5 M_{\odot}$ をもつ巨大な恒星である。SMS の重力崩壊による SMBH 形成シナリオとは、この SMS の重力崩壊によって形成される大質量の種 BH がガス降着によって成長していくというもので、観測 されている SMBH の存在を無理なく説明できる。こ うした背景から、SMS の進化過程が注目を集め、盛 んに議論されてきた。現在までに、SMS の進化計算 (Hosokawa et al. 2013) や個数密度の計算 (Dijkstra et al. 2014) などが行われている。

このように、SMS の進化過程の理論研究は大きく 進展した。しかし、これらの理論の観測的検証はほ とんど行われていない。SMS は $z \simeq 10$ の初期宇宙に おいて形成される考えられており、観測されるため には十分大きな光度をもたなくてはならない。恒星 が生涯で最も明るく輝くのは恒星の重力崩壊に伴う 爆発現象である。よって、遠方の恒星の観測手段とし て、その爆発現象に着目することは非常に有効であ る。このような例として GRB が挙げられる。GRB は恒星が一生を終え、重力崩壊する際に起こると考 えらている爆発現象で、宇宙で最も明るい爆発とし て知られている。GRB は非常に大きな光度をもつ ため、遠方でも観測することが可能であり、すでに GRB を利用した初期宇宙探査などが議論されている (Bromm & Loeb 2002)。同様に、SMS の観測的検証 にも SMS の重力崩壊に伴う爆発現象を考察すること が重要であると考えられる。SMS を progenitor とす る GRB はほとんど議論されておらず、その観測的 特徴は不明である。

本研究では、SMS の重力崩壊時に GRB のような jet を伴った爆発現象が起こると考え、その観測的特 徴・性質を予言する。

2 Supermassive star burst

SMS が重力崩壊したときに生じる爆発現象を GRB の collapser シナリオをもとに考察する (Suwa & Ioka 2011; Nakauchi et al. 2012)。重力崩壊時に、SMS 中心部には BH が形成される。さらに、この BH 近 傍で jet が形成され、SMS の表面へ伝播する。Jet luminosity は、この BH に落下していく物質のもつ エネルギーの一部が jet のエネルギーに変換される と考え、BH への質量降着率から見積もることがで きる。Jet へ供給されるエネルギーが分かると、jet の先端部分 (jet head)の速度を求めることができ、 jet head の運動が分かることになる。

2.1 Collpase

重力崩壊を次のようなモデルで考える。SMS の 各 mass shell はその半径で与えられる free fall time $t_{ff} \simeq \sqrt{\frac{r^3}{GM_r}}$ で中心の BH に落下する。 ゆえに、質量降着率は半径 r までの including mass $M_r = \int_0^r 4\pi r^2 \rho dr$ を用いて、

$$\dot{M}(t) = \frac{dM_r}{dt_{ff}} \tag{1}$$

と与えられる。本計算では、SMS の密度分布として (Hosokawa et al. 2013) に与えられているものを fitting して用いた (図1)。

図 1: SMS の密度分布。データ点は (Hosokawa et al. 2013) に与えられている SMS の密度分布 (質量座標の関 数)を半径の関数として計算し直したもの。Fitting 関数 は中心部分と外層部分を別々に fitting し、適当な半径で つなぎ合わせた。

2.2 Jet propagation

Jet の伝播の考察は、主に (Bromberg et al. 2011) に従う。GRB のように、SMS が重力崩壊すると相対 論的 jet が中心の BH 近傍に形成され、表面に向かっ て伝播する。Jet の形成メカニズムは理論的に未解明 であるが、ここでは Blandford-Znajek 機構を念頭に し、jet luminosity は中心 BH への質量降着率から

$$L_j(t) = \eta_j \dot{M}(t) c^2 \tag{2}$$

と与える (Suwa & Ioka 2011)。ここに、 $\eta_j = 6.2 \times 10^{-4}$ は BH に落下する物質のエネルギーから jet へのエネルギーへの変換効率を与えるパラメータであり、同様の解析を Wolf-Rayet 星に適用したとき、jet の全エネルギーが標準的な GRB の jet のエネルギー $E_j = 10^{52}$ erg となるように与えてある。なお本計算では、SMS のコア ($r_{core} \simeq 2 \times 10^{12}$ cm) までが重力崩壊した時刻を初期時刻として、コア付近から jet の運動を計算した。

Jet は相対論的流体からなり、SMS を構成してい る物質 (ambient matter)と衝突することで衝撃波 を生じ、jet head を形成する。Jet head で圧縮され た流体は sideway expansion によって jet head から 側方に流出し、cocoon を形成する。Jet の伝播は jet head での運動量の釣り合いから、次のように与えら れる (Matzner 2003)。

$$\beta_h = \frac{\beta_j}{1 + \tilde{L}^{-\frac{1}{2}}} \tag{3}$$

$$\tilde{L} \simeq \frac{L_j/c}{\Sigma_j \rho_a c^2}$$
 (4)

ここで、 $\beta_h, \beta_j, L_j, \Sigma_j, \rho_a$ はそれぞれ jet および jet head の速度、jet luminosity、jet cross section、ambient matter (ここでは SMS のコアより外を構成す る物質)の密度である。Jet cross section は conical jet の伝播を考える場合、jet head の位置 r_h と jet の opening angle θ を用いて $\Sigma_j = \pi (r_h \theta)^2$ となる。 Coccon の伝播も運動量の釣り合いから、

$$\beta_c = \sqrt{\frac{P_c}{\rho_a c^2}} \tag{5}$$

と与えられる (Begelman & Cioffi 1989)。ここで、 P_c は coccon 内の平均的な圧力であり、jet head から流 入する輻射優勢な流体が担っているとして計算する。 よって、jet luminosity L_j と SMS の密度分布 $\rho_a(r)$ が分かれば jet head と cocoon の位置の時間発展が 計算できる。GRB のような jet を伴う爆発現象が起 こる条件は、

1.collapse 中に jet breakout が起こる

2.jet が cocoon に飲み込まれない

である (Matzner 2003)。以下の計算結果では、この2条件が成立していることを確かめなければならない。

3 Results

Jet propagation を計算した結果を図 2、3、4 に示 す。図 2 から、collapse 中に jet が SMS の表面に到 達し、jet breakout していることが分かる (条件 1)。 また図 3 からは、jet の速度は常に cocoon の速度よ りも大きく、jet は cocoon に飲み込まれることなく SMS 中を伝播していることがわかる (条件 2)。よっ て、爆発のための条件は満たされており、SMS 中を jet が伝播し GRB のような爆発現象が起こることが 分かる。さらに、図 4 からこの burst は jet breakout 後も非常に長時間 ($\simeq 2 \times 10^7 \text{sec}$)継続する prompt emission を放射することが分かる。

図 2: SMS 中を伝播する jet head の位置の時間変化。SMS の全質量が中心の BH に落下する時間 ($t_{ff} \simeq 2 \times 10^7 \text{sec}$) よりも早く jet head が SMS 表面に到達し、jet breakout していることがわかる。

4 Conclusion

本研究では、SMS の重力崩壊に伴う爆発現象につ いて、その観測可能性・性質を議論する最初のステッ プとして SMS 中での jet propagation を計算した。

図 3: SMS 中を伝播する jet head と cocoon の速度の時 間変化。jet head の速度は常に cocoon の速度よりも大き いことがわかる。

図 4: SMS の中心に形成される BH への質量降着率の時 間変化。図中の矢印の時刻から jet propagation を計算し た。中央の縦線は jet breakout の時刻を表しており、この 時刻以降、prompt emission が観測できる。

計算の結果、jet は collapse 中に表面に到達し、GRB のような爆発現象を起こすことが確認できた。さら に、breakout 後の prompt emission は通常の GRB に比べてかなり長い時間継続することがわかった。今 後、この結果をもとに SMS burst の cocoon emission や afterglow を計算し、その観測可能性・性質を考察 していく。

5 Acknowledgement

本計算を進めるにあたり、適切かつ丁寧な指導・議 論をして頂いた KEK の井岡邦仁准教授、京都大学 の仲内大翼さんに感謝申し上げます。また、日頃か らお世話になっている京都大学天体核研究室、基礎 2014 年度 第 44 回 天文·天体物理若手夏の学校

物理学研究所宇宙グループの皆様にも感謝いたしま す。ありがとうございました。

Reference

Bromberg, O., et al. 2011, ApJ, 740: 100
Bromm, V., & Loeb, A. 2002, ApJ, 575: 111
Begelman, M. C., & Cioffi, D. F. 1989, ApJ, 345, L21
Dijkstra, M., et al. 2014, MNRAS, 442, 2036
Hosokawa, T., et al. 2013, ApJ, 778: 178
Matzner, C. D. 2003, MNRAS, 345, 575
Nakauchi, D., et al. 2012, ApJ, 759: 128
Suwa, Y., & Ioka, K. 2011, ApJ, 726: 107