Tornado Nebulaに付随するミリ波分子輝線の観測

酒井 大裕 (東京大学大学院 理学研究科 天文学専攻)

Abstract

Tornado nebula (G357.7 0.1) は太陽系から 12 kpc の距離にある双極的構造をもつ特異な電波天体であり、 発見以来その起源は永らく不明であった。最近、X 線天文衛星「すざく」により、電波で見える双極構造の両 端に、ほぼ同じスペクトルを呈する 2 つの熱的拡散 X 線源が検出された。加えて野辺山 45 m 望遠鏡による 分子スペクトル線観測によって、2 つの拡散 X 線源の外側に隣接する分子雲 (MC1, MC2) が検出されたこ とから、Tornado の正体は双極構造の中心部分にある中性子星またはブラックホールを含む近接連星系から 放出されたジェットに駆動された構造と考えられるようになった。さらに我々は CO スペクトル線データの 解析を進め、分子ガスの圧力が熱的拡散 X 線源のそれとほぼ同程度である事を見出した (酒井他、2012 年秋 季年会 Q42a)。さらに、VLA のアーカイブデータの検索を行い、Toronado nebula 方向の OH 1720 MHz 輝線データの入念な解析を行った。その結果、その観測の PI らが報告した強力なメーザー・スポットの他 に、微弱かつ空間的に拡散した OH 輝線放射を確認した。この放射は 20 cm 電波連続波で見える Tornado nebula の形状に沿って分布しており、強度パターンも強く相関していることから物理的に付随している事は 間違いないと考えられる。この拡散 OH 1720 MHz 輝線放射は、 $V_{\rm LSR} \cong -12 \,{\rm km \, s^{-1} \, O}$ 二つの速度成分から成り、どちらも "head"部分に分布している。特に "head"部分だけに限るならば、拡散 OH 放射の速度構造は膨張運動と解釈する事も可能であるが、"tail"部分も含めた大局的な運動を記述するモ デルは今のところ見出されていない。

1 Introduction

Tornado nebula (G357.7-0.1) は、銀河系中心方 向にある奇妙な形をした電波天体であり、その名前 は特徴的な軸対称な形状から名付けられたものであ る (Shaver et al. (1985a), Becker & Helfend (1985), Helfand & Becker (1985))。その構造は、主に2つの 構成要素に分けられる。一つは、北西領域に存在す る、電波連続波で明るい部分で、"head"と呼ばれて いる。もう一つは南東領域にある比較的暗い領域で あり、"tail"と呼ばれている。

発見されてから、Tornado nebula の成因に関し て様々なシナリオが提案されてきたものの、この天 体の起源は依然として未知のままである。過去に考 えられてきたシナリオは、大別して2つに分けられ る。一つは、Tornadoの電波連続波で最も明るい領 域にその活動中心があるとするもの(Shaver et al. (1985a), Shull et al. (1989))。もう一つは、Tornado の "head"と "tail"の中間付近に活動中心があり、双 極的な構造を有する、とするものである(Manchester (1987), Caswell et al. (1989))。この天体が銀河系内 のものであるか否か、という点においても議論がな されてきたが、OH 1720 MHz メーザーの検出によ り、Tornado は太陽系から約 11.8 kpc の距離にある、 銀河系内天体であることがわかっている (Frail et al. (1996))。

最近の Suzaku 衛星の観測により、Tornado nebula の両端に広がった熱的 X 線源が検出された (Sawada et al. (2011))。また、2009 年に我々のグループが行っ た NRO 45m 望遠鏡を用いた ¹²CO と ¹³CO J=1-0 輝線の観測により、 2 つの拡散 X 線源に付随する分 子雲が検出された。これらの結果により、Tornado nebula は、ブラックホールや中性子星を主星とする 近接 X 線連星系からのジェットによって生成された ものである可能性が高くなった。

2 Observations

2.1 NRO 45m observations

我々は、2013 年 3 月 1 日から 10 日まで、野辺山 45 m 望遠鏡を用いて、Tornado nebula を CO, ¹³CO, C¹⁸O, HCO⁺, N₂H⁺ J = 1-0 輝線で観測を行った。 受信機は BEARS を用い、on-the-fly (OTF) マッピ ングモードで観測した。望遠鏡のポインティングは VX Sgr の SiO メーザーを 1 時間ごとに観測するこ とで補正し、 $\leq 3''$ の精度を維持した。25 個の自己相 関器が広帯域モードでスペクトロメーターとして使 われ、帯域幅は 512 MHz(110 GHz で 1400 km s⁻¹ の速度幅に対応) と 500 kHz の分解能 (110 GHz で 1.4 km s⁻¹ の速度分解能に対応) である。

得られたデータは NRO の解析パッケージ NOS-TAR を用いて解析した。

2.2 VLA archive data analyses

NRAOのVLAのアーカイブから OH (1720 MHz) のデータを取得した。Tornado nebulaの観測は 2000 年 6 月 24 日と 18 日に C 配列と D 配列で行われた。 合成ビームサイズは、40″×23″であった。

取得した OH (1720 MHz) データは、NRAO の CASA (Common Astronomy Software Applications) で解析した。得られたデータのグリッド間隔 は $15'' \times 15'' \times 1 \text{ km s}^{-1}$ である。

3 Results

図 1(a) は、OH 1720 MHz メーザーが検出された 速度帯での ¹³CO *J*=1-0 の強度分布を表している。 図 1(b) は Suzaku 衛星による観測で得られた X 線の 強度分布である。どちらの図も、白色の等高線で 20 cm 電波連続波強度分布を重ねている。この図から、 OH 1720 MHz メーザーの位置と、2 つの拡散 X 線 源の北西成分の位置に対応する ¹³CO 放射が検出さ れていることがわかる。その他にも、主に Tornado nebula の南側で ¹³CO がいくつか検出されているが、 南東方向の X 線源に対応する放射は明確には検出さ れなかった。 図2は、VLAのアーカイブデータから得られたOH 1720 MHz データの -15 km s^{-1} から -10 km s^{-1} ま でと 0 km s^{-1} から $+5 \text{ km s}^{-1}$ までの積分強度図を それぞれ示している。どちらの速度帯でも空間的に 広がったOH 分子の放射が検出されていることがわ かる。 $-15 \sim -10 \text{ km s}^{-1}$ では Tornadoの "head" から "tail" に向かって広がっているのに対し、 $0 \sim$ $+5 \text{ km s}^{-1}$ では "head" に集中しており、20 cm の電 波連続波の強度分布と相関している。構造の違いは あるが、どちらも "head"領域にあり、"tail"領域で は放射が検出されなかった点では共通している。負 の速度の成分は既に別の研究者によって報告されて いる (Yusef-Zadeh et al. (1999))。しかし、正の速度 の成分は我々が初めて確認した構造である。

4 Discussion

4.1 Two velocity components of OH 1720 MHz line

OH 1720 MHz 輝線は、衝撃波と分子雲の相互作用 の根拠となる重要な輝線であり、実際、超新星残骸 (SNR)のシェルで検出されることが多い。2つの速 度の OH 1720 MHz 輝線が検出されたことと、その どちらもが "head"にのみ存在することから、"head" 領域で何らかの膨張運動が起きていることが考えら れる。しかしながら、現在の段階では実際にどういっ た運動が "head"領域で起こっているかを特定するに は至っていない。

4.2 The differences between head and tail

観測結果と、アーカイブデータの結果を総合する と、"head"領域と"tail"領域で明確な違いがあるこ とがわかる。つまり、熱的 X 線源に関してはどちら の領域にも存在するが、¹³CO *J*=1-0 などの分子雲 自体の存在を示す輝線や、衝撃波と星間物質の相互 作用を示す OH 1720 MHz 輝線の放射は"head"領域 のみで検出され、"tail"領域ではどちらも検出されな かった。

この不一致に対する解釈としては、

図 1: (a)-15 km s⁻¹ から -13 km s⁻¹ での ¹³CO *J*=1-0 の積分強度図。白色の等高線は 20 cm 電波連続 波の分布を表している。赤色の十字は OH 1720 MHz メーザーの位置を示している。(b)Suzaku 衛星によっ て観測された 2-5 keV の X 線強度分布。

図 2: (左)OH 1720 MHz 輝線 -15 -10 km s⁻¹ の範囲での積分強度図。(右)OH 1720 MHz 輝線 0 +5 km s⁻¹ の範囲での積分強度図。等高線は 20 cm 電波連続波の強度分布を示している。

- ショックが起こる前に存在していた星間物質の 状態が "head"と "tail"で大きく異なっており、 ショック後の状態の違いが生じたというもの
- 現在、有力視されている "head"と "tail"の中間 付近に活動中心を持つ双極構造ではなく、"head"
 と "tail"で別々の現象が起きているとするもの

などが考えられる。現在得られているデータからは シナリオをさらに絞り込むことはできないが、現在 有力視されている解釈を積極的に指示するものでは ないことがわかった。

5 Conclusion

- 現在、Tornado nebulaの形成シナリオとして有 力であるのは、"head"と"tail"の中間付近に存 在する活動中心からのジェットによって形成され た、とするものである。この時、ジェットによっ て掃き集められた星間物質が加熱され、2つの プラズマが生成されたと考えられている。
- 野辺山 45m 望遠鏡によって Tornado nebula 方 向の分子輝線の観測を行った結果、"head"領域 では明確な構造が検出されたが、"tail"領域では はっきりとした構造は認められなかった。
- VLA archive より取得した OH 1720 MHz 輝線 データから、空間的に広がった微弱な放射が、 -12 km s⁻¹ と +4 km s⁻¹ の 2 つの速度領域で 検出された。どちらの速度成分も "head"領域で のみ検出された。
- これらのことから、"head"領域と"tail"領域では、検出された放射の種類に明白な違いが見られた。この相違の解釈としては、ショック前の星間物質の性質が異なる可能性や、"head"のみがTornadoに付随している可能性などが考えられる。

Reference

Angelini, L., & White, N. E. 2003, ApJm 586, L71

Becker, R.H., & Helfand, D.J. 1985, Nature, 313, 115

- Burton, M. G., Lazendic, J. S., Yusef-Zadeh, F., & Wardle, M. 2004, MNRAS, 348, 638
- Caswell, J. L., Kesteven, M. J., Bedding, T. R., & Turtle, A. J., 1989, Proc. Astron. Soc. Australia, 8, 184
- Frail, D. A., Goss, W. M., Reynoso, E. M., Giacani, E. B., Green, A. J., & Otrupcek, R., 1996, AJ, 111, 1651
- Helfand D. J., & Becker, R. H. 1985, Nature, 313, 118
- Hewitt, J. W., Yusef-Zaeh, F., & Wardle, M. 2008, ApJ, 683, 189
- Manchester, R. N., 1987, A&A, 171, 205
- Mills, B. Y., Slee, O. B., & Hill, E. R. 1960, Aust. J. Phys., 13, 676
- Sawada, M., Tsuru, T., Koyama, K., & Oka, T., 2011, PASJ, 63, 849
- Shaver, P.A., Salter, C. J., Patnaik, A. R., van Gorkom, J. H., & Hunt, G. C., 1985, Nature, 313, 113
- Shaver, P. A., Pottasch, S. R., Salter, C. J. Patnaik, A. R., van Gorkom, J. H. & Hunt, G. C., 1985, A&A, 147, L23
- Shull, J. M., Fesen, R. A., & Saken, J. M. 1989, ApJ, 346, 860

Turner, B. E. 1982, ApJ, 255, L33

- Yamamoto, H., Ito, S., Ishigami, S., Fujishita, M., Kawase, T., Kawamura, A., Mizuno, N., Onishi, T., Mizuno, A., McClure-Griffiths, N. M., & Fukui, Y., 2008, PASJ, 60, 715
- Yusef-Zadeh, F., Goss, W. M., Roberts D. A., Robinson, B., & Frail, D. A., 1999, ApJ, 527, 172