

太陽フレアはいつ起きるか?

草野完也

名古屋大学太陽地球環境研究所

フレアの際の soft X-ray流束の時間変化

■ 宇宙天気

短期的な宇宙環境変動

太陽フレア、コロナ質量放出(CME) 磁気嵐、電離圏嵐

→ 環境・社会への甚大な影響

Coronal Mass Ejection

被曝影響

送電網・パイプライン

衛星

A single serious event might cause **\$2 trillion** in damages. (NRC)

磁気リコネクション・フレア・モデル

Flare ribbons corresponds to the feet of reconnected field lines.

光球面

雪崩

噴火

pixta.jp - 3655422

2013/7/30

http://en.wikipedia.org/wiki/Black_Monday_%281987%29

 「自由エネルギー」の蓄積と解放 (storage-and-release processes)

不安定性(フィードバック)

2013/7/30

(Kusano et al. 1995, Kusano & Nishikawa 1996)

ひので(2006~)

Nonlinear Force-Free Field Model

Inoue, Kusano et al. ApJ 2011 (c) 02:22 UT on Dec.13

フレア発生にとって重要な条件は?

Large-scale Component

Small-scale Component

問題:どのような複雑構造がフレアのトリガとなるか?

フレア発生条件として磁場構造

- Long PIL of strong magnetic shear (Hagyard, et al. 1984)
- sigmoidal structure (Rust & Kumar 1996; Canfield et al. 1999)
- (Forbes & Priest 1995; Torok & Kliem 2005) flux rope
- magnetic helicity injection (Kusano et al. 1995, 1996)
- double loop structure (Hanaoka 1997)
- flux cancellation (van Ballegooijen & Martens 1989)
- converging foot point motion (Inhester et al. 1992)
- narrow magnetic lanes between major sunspots (Zirin & Wang 1993)
- emerging magnetic fluxes (Heyvaerts, Priest & Rust 1977; Moore & Roumeliotis 1992; Feynman & Martin 1995; Chen & Shibata 2000)
- the sharp gradient of magnetic field (Schrijver 2007)
- reversed magnetic shear (Kusano et al. 2004)
- topological complexity (Schmieder et al. 1994)
- intermittency and multifractality (Abramenko & Yurchyshyn 2010)
- multipolar topologies (Antiochos et al. 1999)

2011/02/12 10:02

太陽面爆発のトリガとなる磁場構造は何か?

複雑すぎてデータを見ているだけでは何が重要な構造なのか 分からない。人間は注目したいものしか注目しない。

それ故、シミュレーションを利用すべき

200

シミュレーションによる2つの戦略

Parameters in Ensemble Simulation

Box: Rectangle including PIL Initial condition: LFFF

> 161 cases

- 3D MHD
- 256x1024x512 grids

■ output: 800 GB/run

Parameter Space: θ_0 vs. ϕ_e

シミュレーション結果

Flare Phase Diagram

反極性型(OP-type)

Magnetic structure just prior to flare

Magnetic structure just prior to flare

chromosphere

Flux tube is formed by reconnection in chromosphere.

2つのフレアトリガ・シナリオ

Reconnection-induced Eruption

観測的検証

Green, Kliem & Wallace 2011

の形成過程

P2

Toriumi, lida et al 2013 (in press)

まとめ

- 太陽フレアは大きなスケール(数10Mm以上)におけるエネルギー蓄積と小さなスケール(数Mm以下)の擾乱の相互作用によって発生する非線形不安定化現象である。
- 逆極性(OP)型磁場と逆シア型(RS)型磁場は、効果的なフレアトリガとして働く。
- それゆえ、大きなスケールと小さなスケール双方の磁場観測によって、フレア発生予測は原理的に可能である。

News: Solar Flares are Predictable!

朝日新聞 2012年11月3日		Inspiring People to Care About the Planet
	GEOGRAPH	HIC 検索 powered by Yahoo! JAPAN
太陽フレア 発生条件解明	トップン ニュニッン 科学の	空中 2 大陸フレマの予測が可能に
り模子でし屋かど太のが噴ム大。	「ツノ	ナショナルジオグラフィック ニュース
やこう やこう やこう やこう やこう やこう やこう やこう	ーユース 写真 NEW	ニューストップ 動物 古代の世界 環境 文化 科学 & 宇宙 風変わりニュース
	動画	太陽フレアの予測が可能に
	宇宙	
でが世荷フ研、こへは起昇電レ究名るフ	動物	🎔 ツイート 🍕 📴 🚺 🔝 🚳 チェック イルルね! <144 👳 +1 < 6
<u>2006年12月</u> 土田知道佐見がとらえたさ 数 こ 規 粒 ア チ 古 の レ	環境と自然	
陽フレア=国立天文台、JAXA提供 名大など	国と人	サイエンスポータル November 7, 2012
発言ち点パを合点 いしるる出す素画 実年 2 すこ消のタ繰わを研ないと磁する爆で広用以	太古の世界	
0る一支境1りせつ究かメ考力る工師起陽化内 0と墜方界ン返るなチュカえ線。ネ1.言フ含に	地球	地球規模での大停電や電波障害などの影
6と四向部をしシぐ」たこらかスル00と目っ 年をがの分解にミ酸ム。スれ経験ギーと優了指し	クイズ・投票	◎ 友人に教える ア」は、前兆として2種類の特殊な磁場構造
と突視敏に研爆ユガは、ムビ外の「万號は、」ア 日急れ力ね。発レ線、はれる黒を個現、。予	キッズ	が出現し、その数時間後に発生することが
年近る線しつかってつしたてか開たで、豪	1 年 つ 2 - 2 2 2 2	分かった。名古屋大学太陽地球環境研究所 の草堅空地教授な中心トオス東京大学、京都大学の現在チャッパーズ
際『爆ず打黒るンり黒 て詳ど出放敵水麦 の	人丸」ノナノツ おすすめトピックス	の早却元也教授を中心とする来ホヘチ、ホ郁ヘチの研究チームか、スーハー コンピューターを使った数値実験や人工衛星の観測データの解析によって発
物在内に「予想」できるかよ	フォトギャラリー	生のメカニズムをつかんだもので、フレア発生の予測など、正確な宇宙天気
数中MC THUCOONO	今日の写真	予報の実現にも貢献が期待される。
」誌 寄るこ「 模気るの通人球 てれと測に ナアこをよる数 寛な嵐。乗信工に大いたこデ起	パズル	」 太陽フレアの発生は、里点の周辺に蓄積された磁場エネルギーの一部が、
ルスの減う太年野停に89客機衛磁規た数ろ〕き 電ト研らに腸以豪電よ年が器星気模こ睫、タた	壁紙	太陽コロナのプラズマエネルギーとして突発的に解放される現象として考え
子口兜ししラ内北がっの被がや嵐なと間「を大」版フ成たてレに一起てフ曚汝地を太も後ミ政想		られているが、詳しいメカニズムは解明されていない。そのため、太
にィ果い、ア数・きカレす障上引腸分に二の楔 発ジは上磁を時生たナアるしのきフル爆磁にフ		
表力、 E気予聞人。 ダで恐、の ビレっ 発動	Arriter and Like the	記事全文 »
にジスたのでに皮 ス も行いりは 起かしの	極限集境への挑戦	この記事は サイエンスポータル で配信された記事の転載です。

ハレー彗星

エドモンド・ハレー(1656年10月 29日 - 1742年1月14日)

Wikipediaより

- 1682年に出現した彗星の観測データとニュートンカ学から、この彗星が 76年の周期を持つ楕円軌道を持つと結論(プリンキピア出版は1687年)
- 過去の記録から、1531年、1607年に出現した彗星が同一のものと推測
- 次回の回帰が1758年であると予測。
- 1758年12月25日、予測通り彗星が出現。