CALETによる高エネルギー 電子・ガンマ線観測

神奈川大学 田村忠久

2013年8月1日

CALET International Collaboration Team

JAPAN

Aoyama Gakuin University Hirosaki University Institute for Cosmic Ray Research, University of Tokyo Ebaraki University JAXA/Space Environment Utilization Center JAXA/ Institute of Aerospace and Astronautical Sciences Kanagawa University Kanagawa University of Human Services High Energy Accelerator Research Organization (KEK) STE, Nagoya University National Inst. of Radiological Sciences Nihon University **Ritsumeikan University** Saitama University Shibaura Institute of Technology Shinshu University Tokiwa University Tokyo Technology Inst. Waseda University Yokohama National University

LTALY

USA

University of Siena University of Florence & LFAC (CNR) University of Pisa University of Roma Tor Vergata University of Padova

NASA/GSFC CRESST/NASA/GSFC and University of Maryland CRESST/NASA/GSFC and Unicersity Space Research Association Louisiana State University Washington University in St Louis 2013年8日前Gersity of Denver 第43回天文・天体物理若手夏の学校

Support Agencies

JAXA/SEUC

CALET 概略

p 観測対象: I 電子:1 GeV ~ 20 TeV ■ ガンマ線:4 GeV ~ 10 TeV (GRB: > 1 GeV)■ 陽子, 核子: 数 10 GeV ~ 1000 TeV (per particle) Ⅰ 超重核(Z>28): > 600 MeV/u ■太陽活動、モジュレーション: 1~10 GeV (電子) ■ ガンマ線バースト:7 keV~20 MeV **p** 装置構成: CAL:高エネルギー電子・ガンマ線望遠鏡 - CHD: 電荷検出器 CHD - IMC:イメージングカロリメータ 粒子選別、入射方向決定 - TASC: 全吸収カロリメータ

エネルギー決定、粒子選別

HTV: H-IIB Transfer Vehicle

H-IIB ロケットによる HVTの打ち上げ

HVT-1 (技術実証機) 2009.9.11 (SMILES)

> CALETの予定 ·HTV-5 2014年打上げ ·観測期間2年以上 5年目標

電子加速源 一天体起源一

- 超新星爆発のエネルギーは、

- 衝撃波のエネルギーとして1%

- ニュートリノが99%持ち去る

SN1987A

超新星残骸(SNR)での衝撃波加速

パルサー磁気圏での加速

NASA PHOTO

KAMIOKANDE

2013年8月1日

第43回天文・天体物理若手夏の学校

6

~ 10⁵³ erg

10⁵¹ erg

暗黒物質起源

暗黒物質の対消滅、崩壊(WIMP)

第43回天文・天体物理若手夏の学校

- 暗黒物質(WIMP)の対消滅

2013年8月1日

第43回天文・天体物理若手夏の学校

銀河内の伝播

-拡散過程

電子のエネルギー損失(銀河磁場、光子との相互作用) シンクロトロン放射 逆コンプトン散乱(IC) 陽子、原子核 二次成分 p+/- or K+/- ® m+/- ® e+/-

拡散過程

Diffusion Model

単一の電子ソースからの拡散方程式

$$\frac{dN_e}{dt} - \tilde{N}(D\tilde{N}N_e) - \frac{\P}{\P E} (bE^2 N_e) = Q$$

 E
 :電子のエネルギー

 $N_e(t, r, E)$:電子の密度(加速後の経過時間 t, Yースからの距離 r)

 Q
 :電子ソースの強度(電子生成率)

 b
 :エネルギー損失に関する定数

 D
 :拡散係数

$$D_0 = 2 \sim 5' \ 10^{29} \ [\text{cm}^2 \text{s}^{-1}]$$
$$d = \frac{10}{100} E < 5 \ \text{GeV}$$
$$d = \frac{100}{100} E^3 = 0.6 E^3 \ 5 \ \text{GeV}$$

- 10 GeV ~ 数 TeV: べき型のスペクトル ~ E⁻³

伝播する電子のエネルギー損失

- シンクロトロンと逆コンプトンによってエネルギー損失

- 高エネルギーになるほど早〈エネルギー損失する

SNR <1 kpc かつ <10万年 TeVの電子が検出可能
 近傍のソースは数個に限られる

- TeV領域の高エネルギー電子のスペクトル

SNRが電子加速源であれば・・・ 近傍ソースだけの影響が見えるはず

近傍の超新星残骸による影響のモデル依存性

Ec= ∞ , Δ T=0 yr, Do=2x10²⁹ cm²/s

 $Do=5 \times 10^{29} \text{ cm}^2/\text{s}$

Ec= 20 TeV

Ec=20 TeV, \varDelta T=0 ~ 1 × 10⁴ yr

2013年8月1日

第43回天文・天体物理若手夏の学校

PAMELA

ATIC

2013年8月1日

hidden U(1)_H ゲージボソンが ダークマター(質量 1.2TeV)で、 標準模型の粒子へ崩壊すると(寿命~10²⁶ s) (arXiv:0811.3357 / PTP 122(2),553,2009)、 → 反陽子を増やさずに、 (BESS,PAMELAの観測に矛盾せず) PAMELAの陽電子比の増大と、 ATIC/PPB-BETSの電子・陽電子過剰を 自然に説明できる。 →

但し、ガンマ線100GeV周辺にピークが出る

KKDM(620GeV)とすると、 boost factor ~ 200 が必要 (KKDMの分布に非一様な塊がある?)

CALETによる観測で期待される暗黒物質の検出

SUSY 暗黒物質 (質量 820GeV) による ラインガンマ線スペクトル

CALET による電子観測

- 低バックグランド(陽子除去能力:10⁵)と高いエネルギー分解能(~2%)で、 1 TeV を超える領域へのスペクトル観測を伸ばす
- ATIC anomaly と低エネルギー側 1 GeVまでの精密なスペクトル測定
- 異方性の検出による近傍ソースの特定

近傍ソースなのか? 暗黒物質なのか?

CALETによる電子観測(5年間) - Astrophysical Model-

KK DM vs. SNR type ($\Delta t=10^5$ year)

SNR Type vs. Pulsar ($\Delta t=3 \times 10^5$ year)

Detection of High Energy Gamma-rays

Performance	for	Gamma-ray	Detection
-------------	-----	-----------	-----------

Energy Range	4 GeV-10 TeV			
Effective Area	600 cm ² (10GeV)			
Field-of-View	2 sr			
Geometrical Factor	1100 cm ² sr			
Energy Resolution	3% (10 GeV)			
Angular Resolution	0.35 ° (10GeV)			
Pointing Accuracy	6'			
Point Source Sensitivity	8 x 10 ⁻⁹ cm ⁻² s ⁻¹			
Observation Period (planned)	2014-2019 (5 years)			

117

104

78

65

52

25

Simulation of Galactic Diffuse Radiation

~25,000 photons are expected per one year

0	3.1	6.2	9.3	12	16	19	22	25	28	31
*)~7	,000	pho	otons	fro	om e	xtra	igala	ctic	
	γ-ba	ckgr	ouno	d (EG	B)	per	one	year	•	

Simulation of point sources per one year

Vela: ~ 300 photons above 5 GeV

Geminga: ~150 photons above 5 GeV Crab: ~ 100 photons above 5 GeV

2013年8月1日

2018年8月2日

第43回天**阪市天体物理満手夏の**学校

CALET

Mean Free Path: 1.65 Energy Resolution: < 30 %

CALET による観測予測とこれまでの気球データ

イベント数の期待値

E range (TeV/n)	Proton	He
0.4-0.7	967734	128408
0.7-1.2	402176	56356
1.2-2.0	167138	24733
2.0-3.5	69460	10855
3.5-5.9	28866	4764
5.9-10.0	11996	2091
10.0-16.9	4986	918
16.9-28.8	2072	403
28.8-48.9	861	177
48.9-83.0	358	78
83.0-140.9	149	34
140.9-239.3	62	15
239.9-406.4	26	6.6
406.4-690-2	10.7	2.9
690.2-1172.1	4.4	1.3
>1172.1	1.8	0

観測可能な最高エネルギー

Nucleus	10 events with E (TeV/n) >	5 events with E (TeV/n) >
н	586	893
He	265	416
С	22.9	34.6
0	20.6	30.9
Ne	9.2	14
Mg	10.8	16.4
Si	6.3	9.3
Fe	9	13.8

■ 拡散係数のエネルギー依存性: *D* ~ *E*^δ
 ■ 大気の影響を受けずに数TeV/n まで観測

K_B=40:ATIC Ti/Feより 1σ 2σ

CALETによる5年間の観測(黒丸)で期待される スペクトルとこれまでの気球データの比較

SNRの衝撃波中でp-p相互作用に続いて二次e⁻,e⁺も加 速されるとして電子スペクトル(Fermi-LAT,HESS)を解 釈すると、Pamelaのe⁺/(e⁺+e⁻)増大とも、二次核がSNR で加速される場合のB/C比とも合う(*K*_B=20) (arXiv:0909.4060/Phys. Rev. D 80,123017 (2009)) 高エネルギー側のデータが必要

第43回**夫阪市夫陸物理満乗夏の**学校

CALET カロリメータ

pCHD 電荷検出器

プラスチックシンチレータバー (32×10×450 mm³): 14本×2(X,Y) PMT読出し

- pIMC イメージングカロリメータ
 - シンチファイバー (1 mm角×448本):8層×2 (X,Y) 64chマルチアノードPMT読出し タングステン板:3 r.l. (0.2 r.l.×5 + 1 r.l.×2)

p TASC 全吸収カロリメータ

PWOシンシレータ(19×20×326 mm³): 16本×12層 (27 r.l.) APD/PD読出し

CALETのシャワーイメージング(シミュレーション)

·IMCとTASCのイメージ解析による陽子除去能 10⁵ (電子選別へ混入する陽子は10⁵個に1個)
 ·CHDによる電荷分解能 0.15~0.3 e

2013年8月1日

第43回天文・天体物理若手夏の学校

CALET 電子観測性能

電子に対するエネルギー分解能

CHDによる電荷分解能(ΔZ=0.15~0.3 e)

29

電子/ガンマ線に対する角度分解能

10 1800 Angular Resolution [deg] 1600 1400 1200 1000 **** 800 10-1 600 400 electron 200 10-2 gamma-ray 5 6 7 9 4 8 10^{3} 10² 10⁴ 10 体物理若 z From test beam @ GSI E₀ [GeV]

電子1TeVに対する陽子除去能力

電子 1 TeV

陽子 2.9 TeV

シミュレーション

陽子: E^{-2.7} (1~1000TeV) 1.6x10⁶ イベント

電子: 1 TeV

電子95%を残すカットで陽子は4個残留 陽子除去能力:~2x10⁵ (90% C.L.)

第43回天文・天体物理若手夏の学校

気球実験 bCALET-2(実証化)

10GeV程度の電子候補例

1GeV 以上のガンマ線候補例

2013年8月1日

第43回天文・天体物理若手夏の学校

電子観測の軌跡

P 120 Ge

P 60 GeV

PPB-BETS

 $(2000 \sim 2004)$ 電子10~1000 GeV

CALET (R&D 1998~2010) (開発着手 2010~) 電子10~20,000 GeV 国際宇宙ステーション

BETS $(1994 \sim 2000)$ 電子10~100 GeV 三陸気球観測

南極周回気球観測

■ CALETは電子観測を主目的とし、 電子検出に最適化されている

■ 電子観測以外を主目的とするが、 電子観測も可能な装置 ATIC, PAMELA, Fermi-LAT, AMS, HESS, ISS-CREAM, DAMPE, GAMMA-400, CREST

ATIC

Advanced Thin Ionization Calorimeter $Z = 1 \sim 28$ E = 10 GeV ~ 100 TeV 南極(米国) 2001, 2003, 2005, 2007年 電子:10 GeV~数 TeV Silicon Matrix Hodoscopes Electronics Bays Carbon Target

BGO Calorimeter

0

2013年8月1日

第43回天文・天体物理若手夏の学校

BGO カロリメータ 34

ATICによる 電子 観測

- ATIC-1,2

PAMELA

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics 永久磁石, カロリメータ, TOF, Anti, 中性子検出器 2006年~

Particle	Energy Range
Antiproton flux	80 MeV - 190 GeV
Positron flux	50 MeV - 270 GeV
Electron flux	up to 400 GeV
Proton flux	up to 700 GeV
Electron/positron flux	up to 2 TeV
Light nuclei (up to Z=6)	up to 200 GeV/n
Light isotopes (D, ³ He)	up to 1 GeV/n
Antinuclei search	(better than 10 ⁻⁷ in anti He/He)

2013年8月1日

第43回天文・天体物理若手夏の学校

1.3 m

第43回天文・天体物理若手夏の学校

39

PAMELAによる陽電子比観測

陽電子比率

Fermi-LAT

- Large Area Telescope
- ガンマ線観測衛星(20 MeV~300 GeV)
- シリコントラッカー、カロリメータ、アンチカウンタ
- 2008年~
- 電子:20 GeV~1 TeV

Fermi-LAT, HESSによる電子観測

AMS-02

Alpha Magnetic Spectrometer
反粒子、暗黒物質・・・
永久磁石, TRD, TOF,
RICH, カロリメータ, アンチ
2011年5月 ~

電子観測装置の性能比較

Detector	Energy Range (GeV)	Energy Resolution	e/p Selection Power	Key Instrument (Thickness of CAL)	SΩT (m² sr day)
PPB-BETS (+BETS)	10 -1000	13% @100 GeV	4000 (> 10 GeV)	IMC (Lead: 9 X ₀)	~0.42
ATIC1+2 (+ ATIC4)	10 - a few 1000	~2% (>100 GeV)	6,000	Thick Seg. CAL (BGO: 18 X ₀) + <mark>C Targets</mark>	3.08
PAMELA	0.05-400	5% @200 GeV	10 ⁵	Magnet + IMC (W:16.3 X ₀)	~1.6 (2 years)
FERMI- LAT	20-1,000	5-20 % (20-1000 GeV)	10 ³ -10 ⁴ (20-1000GeV) Energy dep. GF	Tracker + ACD + Thin Seg. CAL (W:1.5X ₀ +CsI:8.6X ₀)	770@100GeV 110@TeV (1 year)
AMS	1.5-1,000 (Due to Magnet)	~2.5% @100 GeV	10 ⁴ (x10 ²⁻³ by TRD ⁾	Magnet+TRD+RICH+IMC (Lead: 16.7X ₀)	~100 (?) (1year)
CALET	1-20,000	~2% (>100 GeV)	~ 10 ⁵	IMC + Thick Seg. CAL (W: 3 X_0 + PWO : 27 X_0)	220 (5 years)

CALETは、GeVからTeVを超えるエネルギー領域の電子観測に最適化されている

まとめ

- CALETは、宇宙での高エネルギー現象を探求することを目的に、電子を 20
 TeV まで、ガンマ線を 10GeV~ 10TeV で、陽子と原子核を数 10 GeV~ 1000
 TeVで観測する.
- ・ 気球実験の経験を基にして、6年間の Pre-phase A 研究の完了後、CALET は JEM-EFの第2期利用ミッションに選定され、2010年3月に開発に着手した。現 在は、2014年夏期の打上げを目指して、フライト品の製造・試験を行っている。
- 道 電子観測は、暗黒物質探査を含む重要な課題となっており、電子検出を主目的 としない各装置も観測を行っている。精密なスペクトルを出すためには、高いエ ネルギー分解能が必要。そして、TeV領域でのスペクトルの見極めが必要。