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1 Introduction

Recent progress in the observation enabled us to find over 700 exoplanets, including
low-mass exoplanets whose masses are less than 30Mg. According to exoplanets’
database (www.exoplanet.eu), we can know 31 low-mass planets’ masses and radii.
Given the planet’s mass and radius, we find the planet’s mean density. The planet’s
mean density has a clue to understand the planet’s composition and origin.

Increasing the number of exoplanets gives us the useful statistical information.
To analyze the statistical information, we show the exoplanets on the mass-radius
relationship. Comparing with the mass-radius relation ship of the solid planets (e.g.
Seager et al. 2007, Fortney et al. 2007), we fan find as the planet’s mass increase its
radius also increase while the radius increasing rate of exoplanets is steeper than that
of solid planets. To explain the difference, we need to consider the planet’s expansion
due to the thermal effect. Short-period exoplanets must have experienced the mass
loss because of the intense stellar X-ray and UV (XUV) flux. However, effect of the
mass loss on the mass-radius relationship have not discussed yet. It is important
to understand the mass-radius relationship of the low-mass planet for discussing the
planet’s composition and origin.

In this study, we calculate the thermal evolution and mass loss of the water-rich
planet which is consisted of the rocky core and the water mantle. And we derive (i)
the mass-radius relationship of the water-rich planet taking into account the effect of
irradiation of the host star and (ii) the mass-radius relationship taking into account
the mass loss of the planet.



2 Method

We assume the planet is spherically-symmetric three layer structure which is consisted
of isothermal rocky core, convective water layer and radiative water vapor atmosphere
form inside out. We deal with the thermal evolution and the mass loss driven by
stellar XUV flux simultaneously.

2.1 Atmospheric model

We assume the planet’s atmosphere has plain-parallel radiative equilibrium structure.
We make use of radiative momentum equations derived by Guillot (2010);

dH,

dm = Hngv (1)
C;[Tiv = K‘SHV7 (2)
dHy
dTTtl = ’ffh (Jth - B) s (3)
Ay, )
dT:L = K;tthh? (4)
kb Jy + kp (Jm —B) = 0, (5)

where H, J, K are the moment of radiative transfer equation whose subscript means
wavelength ( v: visible, th: thermal ), m is atmospheric mass coordinate, B is the
Planck function, and « is the mean opacity;

kP = /nl,Jl,dv//Jydu, (6)
1 1 dH dH

1 7
KT Kil, dm // (M)
Ky, = IQVJVdI///JVdV, (8)
1 1 dH dH
o = 1 / / v, (9)
th h Ky Am

respectively (subscript ”v” means visible light frequency, ”th” means thermal or
infrared light frequency). Practically in this paper, we deal with these opacities as




the Planck mean opacities or the Rosseland mean opacities;

/@5 = /K)VBV(T—T*)dy//By(T—T*)dya (10)
1 1 dB, T T.) B,(T =T.)

1 / dB,(T =T,) //d ) v, (11)
HV

ﬁfh - /KVBV(T:Tatm)dy//BV(T:Tatm)dV’ (12)
ir _ /1dB (T = Taim) | //dB (T = Tatm)d’ (13)
Kin

where B, (T) is the Planck function, T, is the temperature of host star, and Tty is
the temperature of the atmosphere respectively. We adopt HITRAN opacity data
fitted by the least square method;

P 2.07TE—2
KD = 697<1bar> (14)
. o.o137<1§er r>o'%3 (15)
l{i)h _ 365< P )8.88E—3< T )—2.06’ (16)
1bar 1000K
0.929 —2.03
Fin = 0‘240(11;) <10(:)FOK> ’ (17)

where P is pressure, T is temperature respectively. We fit HITRAN opacity data
table at P = 1,10, 100, 1000 and T = 1000, 2000, 3000K
We assume Eddington approximation;

1

K, = 5Jy, 18
. (18)
1

Kth - thh. (19)

The boundary condition of the moment equation is

1
H = Hv + ch = EUT}i‘m (20)
Hom=0) = —— Lo (21)
vim = - \f4 rr»

where Tiyt is intrinsic temperature, Ty, is irradiation temperature, respectively. And
upper boundary condition between J and H, we use
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Hv(m:O) = —%JV(WZO), (22)

Hyn(m = 0) = %Jth(m —0). (23)

We treat the bottom of atmosphere as the interface between radiative and convective
zone. We use Schwarzschild criterion to determine the interface. If the temperature
gradient V := dInT/dIn P is lager than adiabatic temperature gradient V.q, i.e.
V > V.4, the heat transport system by the convection become dominate rather
than by the radiation. We use (P,q, Taq) as the boundary condition of the interior
structure of the planet.

We calculate the pressure and optical depth by hydrostatic equilibrium;

oP

% = 9 (24)
or ,

% = ch . (25)

We assume the atmosphere is plain-parallel approximation. The optical depth is
evaluated by «{}, and the planetary radius is determined at 7 = 2/3. The atmospheric
thickness z is evaluated by

Tad H Tad T
z = / —dr = R —dr, (26)
2/3 T K9 J23 T

where H is scale hight H := dr/dln P, R is gas constant, p is molecular weight and
Tad 1S the optical depth at the interface between radiative layer and convective layer.
We assume that atmosphere’s gas is behaved as an ideal gas.

2.2 Interior structure

The boundary condition is determined by the atmospheric model; (Paq,Taq), deter-
mined by the Schwarzschild criterion; V = V,q. We assume the interior structure of
the planet is spherically-symmetric, hydrostatic equilibrium;

OP GM,

oM, — dmrd’ (27)
or 1

oM,  4nr?’ (28)

where M, is interior mass coordinate, r is the distance from the planet center, P is
the pressure, p is the density and G is the gravitational constant respectively.



In the water layer, we also assume the temperature structure of the planet’s
interior follows adiabatic temperature; ' = T'(P, S), where T is the temperature, P
is the pressure and S is the entropy respectively. The equation of state we adopt is
SESAME water EOS table whose serial number is 7150-301.

In the rock core, we have an assumption that rocky core is isothermal. We adopt
the equation of state of rock is

P = p*4% exp (—6.579 — 0.176p + 0.00202?) , (29)

where p is in g/cm? and P is in Mbar, composed of 38% SiOs, 25% MgO, 25% FeS,
and 12% FeO. (Hubbard & Marley (1989))

We integrate straightforward from outer boundary (P,q, Taq) and iterate until the
inner boundary is consistent with » = 0, m = 0.

We neglect the presence of any radioactive heat source in the interior. Therefore,
the thermal evolution is determined by the equation of energy conservation;

oL a8
o, ~ " <8t> ’ (30)

where L is the intrinsic luminosity, S is the entropy per unit mass (specific entropy),
and t is time. To derive the simplified formula, we integrating this equation by mass,

oS\ [Mr oT.

Note that the specific entropy is constant through the convective region and the core
is isothermal. L, is total intrinsic luminosity of the planet, C\ is the heat capacity
of the rocky core, M, is the mass of the core and T, is the temperature of the rocky
core respectivery. The formula of L, is

My 9L

L, :=
b 0 aM'I‘

dM, = 4w R2o Ty, (32)

where M, is the total mass of the planet, R, is the planet radius, and T}, is the
intrinsic temperature. We assume C, = 107 ergs/(K-g).

2.3 Mass loss
Erkaev et al. (2007) derived energy-limited XUV driven hydrodynamic escape;

2
B GFXUVRpﬂ'ReXO

M ,
GM, p K tide

(33)



where M is the mass loss rate per second, € is the mass loss efficiency, Fxyy is X-ray
and UV flux of the host star, R, is the radius of the planet, Rey, is the exobase of the
planet, M), is the mass of the planet, Kj;q. is Roche-lobe effect, and G is gravitation
constant. We suppose that the host star is G-star and Fxyvy is

b8, 2 )
Fxyv =29.7 (1Gyr> (m> erg/(s - cm®), (34)

derived by Ribas et al. (2005) when the host star’s age ¢ is 0.1Gyr < ¢t < 6.7Gyr. The
XUV flux before 0.1 Gyr is uncertain. We assume the XUV flux is constant before
0.1 Gyr;

a \~2 9
m) erg/(s-cm?), (35)
and we also assume that the XUV flux is decline following the power law; t =123, The
formula of Kiiqe is derived by Erkaev et al. (2007);

Fxuy = 504 (

(n—1)2@2n+1)
2n3 ’

Kiige = (36)
where 6 = M,/My, A = a/R,, n = rrr/R, (rrr, means Roche-lobe radius; rgy, ~
(6/3)Y/3d) respectively. Rey, and e are related to the atmospheric composition and
the chemical reaction. We assume Rexo = R, and € = 0.1. We calculate quasi-static
thermal evolution and mass loss.

2.4 The procedure to calculate the interior structure and
evolution of the planet.

The planet’s radius R, is determined by the planet’s mass M, the planet’s specific
entropy S and the water to rock ratio X, /r- The planet’s radius Ry, is described by the
sum of the planet’s convective zone radius Rqny and the thickness of the atmosphere
z. That is, R, = Rconv + 2. We integrate the hydrostatic equations by 4th-order
Runge-Kutta method and use shooting method to determine the planet’s convective
zone radius Reony. The planet’s specific entropy S is the important parameter to
determine the planet’s thermal evolution. To calculate S, we integrate the radiative
momentum equations of the planet’s atmosphere.

To calculate the thermal evolution of the planet, we derive the evolution time At
which correspond to AS. We also calculate the mass loss M (t + At) — M(t) = MAt.

Our interior structure code is checked by Valencia et al. (2007) and the atmo-
spheric code is checked by the analytical formula derived by Guillot(2010).



3 Result

3.1 The atmospheric structure

Figure 1 shows the planet’s atmospheric structure. We calculate the planet’s atmo-
spheric structure composed of water provided that the planet’s mass is 10Mg, its
semi-major axis is 0.05AU and water to rock ratio is 3. We parametrized the planet’s
luminosity Lo = 10%3,10%4,10%°,10% ergs/s. The bottom of the atmosphere is de-
termined by Schwarzschild criterion; V = V,4. We find as the planet lose its heat, the
pressure at the interface between radiative layer and convective layer, P,q, becomes
large. This trend corresponds to losing planet’s entropy by the thermal evolution of
the planet.

3.2 Planetary evolution without mass loss

We show results which the water-rich planet experiences shrinkage due to the cooling.

Figure 2 shows the mass-radius relationship of the water-rich planets. We derive
isochron lines of 10 giga years. We assume the water to rock ratio X,,,. =0.1, 0.3, 1,
3 and 10. These relationships shows following two features:

e Planets’ radii have weak dependence on their mass at X,/ > 1.

e As masses of planets whose X,,/, = 0.1 become large, their radii also become
large. However, they have gentler slop than the rocky planet’s slope on the
mass-radius relationship.

Here, we compare with the mass-radius relationship and the observed exoplanets.
We can find that the slope of observations is steeper than that of the water-rich
planets. This suggests that as planets become massive, planets seem to have more
volatile compositions.

3.3 Planetary evolution with mass loss

In this subsection, we discuss the water-rich planets’ evolution taking into account the
energy limited hydrodynamic escape. Figure 3 shows the time evolution of planets’
masses (upper) or radii (downer) including thermal evolution and mass loss simulta-
neously. We set the parameters that the initial luminosity of the planet is 10?® erg/s,
the semi-major axis is a = 0.05AU, the water to rock ratio X,,/, = 3 and the mass
loss efficiency € = 0.1. We show 4 examples: planets masses are 14, 15,20 and 30Mg,.
In this case, planets M, > 14Mg remain their water layers and M, < 14Mg lose
their water layers at all. 14,15 and 20Mg planets have typical time scales when their
mass lose steeply. These time scales are < 107 years for 14Mg planet, ~ 107 years
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Figure 1: This figure shows atmospheric profile. The x-axis is the temperature [K]| and
the y-axis is the pressure [bar]. We set parameters M, = 10Mg,a = 0.05AU, and the
water to rock ratio X,/ = 3. We set the planet’s luminosity L, o = 10%*(pink), 10%*(blue),
10%(green) and 10%°(red). We calculate until the Schwarzschild criterion; V = V4.
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Figure 2: This figure shows the mass-radius relationship of water-rich planets. The x-axis
is planets’ mass [Mg] and the y-axis is planets’ radii [Rg]. We set parameters a = 0.05AU,
water/rock = 0.1,0.3,1,3 and 10. These isochron lines represent 10 giga years.
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for 15Mg, planet and ~ 10® years for 20Mg planet. At these time scales, planets’
radii also slightly expand due to weaken the effect of the gravitational compression
comparing with the effect of the thermal expansion. Because of M Rg /Mp, M
decreases by order of magnitude after experienced the steep mass loss. After the
steep mass loss, the planet’s water to rock ratio X,/ ~ 0.1. Therefore the planet’s
radius gradually shrink due to the effect of the rocky core. These results suggest
that the effect of mass loss has significant effect on the planetary composition for the
low mass planet, especially ~ 10Mg. The planet’s radius shrinks because the rock
component become dominant. That is, the planetary radius varies due to not only
thermal evolution but also mass loss.

Figure 4 shows the planets’ evolutionary tracks on the mass-radius relationship.
We set the initial planet’s luminosity 10%° ergs/s, the semi-major axis is 0.05AU, the
mass loss efficiency is 0.1 and the water to rock ratio is 3. We can find the radius of
14 Mg planet is nearly Roche lobe radius. If the planet’s radius larger than its Roche
lobe radius, the planet can be collapsed by the tidal force of the host star. The mass
loss model we adopt cannot apply if the planet’s radius is larger than its Roche lobe
radius. If the planet’s radius is larger than its Roche lobe radius, the planet’s water
layer will be quickly evaporated and turned to be the necked rocky core planet. In
this paper we deal with the case the planet’s radius is larger than its Roche lobe
radius as the planet is removed its water layer.

11
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Figure 3: These figure shows time evolution of the planets’” masses. (Upper) The x-
axis is time [year| and the y-axis is planets’ masses [Mg]. (Downer) The x-axis is time
[year] and the y-axis is planets’ masses [Mg]. We set parameters L, = 10%ergs/s,
a = 0.05AU, X,,, = 3 and € = 0.1. The red lines mean the planets whose planets’ water
mantle will evaporate at all and the brown lines connecting to red lines means necked rocky
core. The blue lines means the planets which remain water layers for 10 giga years.
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Figure 4: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [Mg], and the y-axis is planets’ radii [Rg]. The dotted lines mean the
initial state of the planets and the solid lines mean the planets after 10 giga years. Lines’
colors mean the initial intrinsic temperature.
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3.4 The dependence on the parameters

In this subsection, we evaluate the dependence on parameters : (1) the initial planet’s
luminosity Ly, (2) the semi-major axis a, (3) the mass loss efficiency € and (4) the
water to rock ratio X, /.. In this paper, we define the My, as the initial planet’s
mass whose water composition is evaporated at all after 10 giga years. If the mass
loss has strong effects, the M become bigger. We use the threshold mass My
to evaluate the sensitivity of parameters; the initial planet’s luminosity L, o, the
semi-major axis a, the mass loss efficiency € and the initial water to rock ratio X, ..
Some water-rich planets become lager than the Roche lobe in their evolution. If
the planet’s radius is lager than the Roche lobe, the planet will be experienced the
dynamical mass loss. In that case, we consider that the planet becomes the rocky
planet and such the case represents the grey dotted-line in the mass-radius diagram.
In fact, the semi-major axis and the mass loss efficiency are not constant values
through the planetary lifetime because the planet’s situation can change such as
orbital evolution. However these problem are beyond the control in this paper.

1. The sensitivity of the initial planet’s luminosity L, o

Figure 5 shows mass-radius relationship taking into account the mass loss of the
planet. We change the initial planet’s luminosity 102%,10%4,10%% and 10%6 ergs/s
and set the semi-major axis a = 0.05AU, the water to rock ratio X/, = 3 and
the mass loss efficiency € = 0.1 respectively. As L, become bigger, the planet’s
radius become larger at the initial condition. The planet which has larger radius
loses more its mass than the smaller one. Therefore, the lager L, o causes the
more mass loss of the planet. If the planet’s mass is 2 30Mg, the mass loss
does not have a significant effect on the mass-radius relationship. Because the
contraction by the planet’s gravity has more efficient than the expansion by the
thermal effect for such a high mass planet.

2. The sensitivity of the semi-major axis a

Figure 6 shows the mass-radius relationship taking into account the mass loss
of the planet, taking notice on the difference of the semi-major axis. We change
the semi-major axis 0.01,0.05 and 0.1 AU and set the initial planet’s luminosity
Ly o = 10%ergs/s, the water to rock ratio Xw/r = 3 and the mass loss efficiency
€ = 0.1 respectively. The dotted-lines are the initial states of the planets, solid-
lines are the planets whose age are 10 giga year and dashed lines are Roche-lobe
radius. If the planet is close to its host star, the planet receive intense irradiation
and XUV flux. Moreover the closer planet has the smaller Roche-lobe radius
and then Kjijqe becomes smaller, which means M become bigger. These two
effect make the planet’s evaporation strong.

3. The sensitivity of the initial water to rock ratio X/,

14
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Figure 5: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [Mg], and the y-axis is planets’ radii [Rg]. The dotted lines mean the
initial state of the planets and the solid lines mean the planets after 10 giga years. Lines’
colors mean the initial planet’s luminosity; 10?3, 10?4, 10%° and 10?®ergs/s respectively.
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Figure 6: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [Mg], and the y-axis is planets’ radii [Rg]. We assume initial planet’s
luminosity L, = 10*ergs/s, ¢ = 0.1. Colors represent the difference of semi-major axis;
0.01AU (red lines), 0.05AU (blue lines) and 0.1AU (green lines). Dotted lines are the
conditions at t = 0. Solid lines are the conditions after 10 giga years. Dashed lines are the
Roche-lobe radius at 0.05AU.

16



Figure 7 shows the mass-radius relationship taking notice of the difference of
water to rock ratio. We change the water to rock ratio 0.1, 1,3 and 10 and set the
initial planet’s luminosity L,o = 10%ergs/s, the semi-major axis a = 0.05AU
and the mass loss efficiency € = 0.1 respectively. If the planet’s X, /. is small,
the planet’s composition is dominated by rock. Therefore, the mass loss does
not work effective.

4. The sensitivity of the mass loss efficiency e

Figure 8 shows the mass-radius relationship taking into account the mass loss
of the planet, taking notice on the difference of the mass loss efficiency €. We
change the mass loss efficiency 0.01,0.1 and 1 and set the initial planet’s lu-
minosity L,o = 10%°ergs/s, the semi-major axis a = 0.05AU and the water
to rock ratio X/, = 3 respectively. The red-dotted line is the initial state
of the planets and gray dotted-line is the Roche-lobe radius. The solid-lines
are the planets whose age are 10 giga year. The lines’ color, green, blue and
purple represent the difference of € = 0.01, 0.1 and 1 respectively. Lager mass
loss efficiency causes lager mass loss. On the other hand, when ¢ = 0.01, the
planet whose initial state’s radius is nearly the Roche-lobe radius remains its
water. However, if the planet’s radius is lager than the Roche-lobe radius, the
planet does not bound its body by own gravity. Hence the planet lose its mass
quickly, but in fact our mass loss model does not apply when the planet’s ra-
dius is lager than the Roche-lobe radius because the planet have experienced
non-quasi-static hydrodynamic escape. In Fig.8, the green dotted-line on the
green solid-line represent the planets whose radii are lager than the Roche-lobe
radius in their evolution.

Here, we summarize My, in Table 1

e The initial planet’s luminosity L, o

If we enlarge the L, o order of magnitude, it makes the My,,s large factor ~ 2.

e The semi-major axis a
If we change semi-major axis a by 10 times, the My change ~ 10 times.
Although the Fxyy change as intense as 100 times and the Roche lobe radius
changes, the high mass planet tend to contract and sustain mass loss.

e The water to rock ratio X/,

If we consider the same planet’ mass, large X,/ planet tend to inflate and lose
its mass more than small X, /. one. The M changes factor ~ 5 between
Xwr = 0.1 and 10.

e The mass loss efficiency €

If we enlarge e from 0.01 to 10, My, changes factor ~ 3.

17
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Figure 7: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [Mg], and the y-axis is planets’ radii [Rg]. We assume the initial planet’s
luminosity L, = 10%ergs/s, the semi-major axis a = 0.05AU, the mass loss efficiency
e = 0.1. Solid lines are the conditions after 10 giga years. We change the water to rock
ratio X,,;, = 0.1 (red line), 1 (green line), 3 (blue line) and 10 (purple line). Dashed line
is the Roche-lobe radius.
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Figure 8: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [Mg], and the y-axis is planets’ radii [Rg]. We assume T}, = 100K,
a = 0.05AU. Colors represent the difference of the mass loss efficiency; 0.01 (green lines),
0.1 (blue lines) and 1 (purple lines). Dotted red line is the conditions at ¢t = 0. Solid lines
are the conditions after 10 giga years. Dashed line is the Roche-lobe radius.
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These results suggest that the mass loss of the planet has a significant effect on
the ~ 10Myg planet. Such low mass planet are the transition point between Super-
Earths and Hot-Jupiters. Comparing with values of My, the semi-major axis a has
the largest effect on the mass loss. On the other hand, the initial planet’s luminosity
L0 has smaller effect on the mass loss than other parameters.

Table 1: The dependences of parameters of the threshold masses
Ly, lergs/s] || 10% | 10%* | 10% | 10%°
Miws [Mg) || 85 | 11.5 | 14 | 23

a[AU] 0.01 [ 0.05 ] 0.1

Mis [Mg] || 86 | 14 | 6.3

Xo/r 01 ] L | 3 | 10
M [Mg] | 49 | 75 | 14 | 269
¢ 001] 01 | 1

Mins [Mg] || 115 | 14 | 32
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4 Discussion: implications to the origin

In this section, we discuss implications to the origin of the water-rich planet.

4.1 The giant impact

In this section, we discuss the initial condition of the planet. Here we discuss the
planet formed by giant impact.

We calculate the gravitational energy of the planet E4(M),) and the impact energy
Eimp;

1
Einp = 5/“)2017 (37)

2G
= i 1 - 2E0A ), (33)

where © = mymg/(m1 + mg) that m; and mg are the impactors’ masses, Viyp is
the impact velocity, vesc is the escape velocity and d is the initial distance between
impactors and vy, is the relative velocity between impactors when the distance be-
tween them is d. We assume d = 107piy, vin = €Vkep (€ : the eccentricity, viep @ the
keplerian velocity) and M, = m; + mg here. We estimate the planet’s gravitational
energy after the giant impact,

Eg(mi1) + Eg(ms2) + Eimp = Eg(M,). (39)

We derive the planet’s radius to satisfy the gravitational energy after the giant impact.
And we also calculate the thermal evolution and the mass loss over 10 giga years to
derive the mass-radius relationship of the water-rich planets.

4.1.1 Numerical results

We adopt the 1 giga years isochron line data as the reference mass, radius and grav-
itational energy data of the planet. Impactors’ masses are mj, mo and their radius
are ri, 1o respectively.

e In the case of m1 = my

Figure 9 shows the mass-radius relationship in the case of considering the giant
impact on m1 = mo. We assume the eccentricity e = 0.01 and the semi-major
axis a = 0.05AU. If the giant impact event occurs near the host star, the small
mass planet will be evaporated at all. That is because the smaller mass planet
has the smaller Roche lobe radius.
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e In the case of m; = 3msy and e = 0.01
Figure 10 shows the mass-radius relationship in the case of considering the giant
impact on m; = 3meo. We assume the eccentricity e = 0.01 and the semi-major
axis a = 0.05AU. My, of this case is smaller than the case of m; = mo. That
is because in the case of m; = 3mg, the gravitational energy is more deep than
the case of m1 = mo.

e In the case of m; = 3mg and e = 0.1
Figure 11 shows the mass-radius relationship in the case of considering the giant
impact on m; = 3mg. We assume the eccentricity e = 0.1 and the semi-major
axis a = 0.05AU. My, of this case is larger than the case of e = 0.1.

We summarize the Myy,s for giant impact in Table 2. If we consider mgy/m; =1
and e = 0.1 then the planet’s radius (whose mass is lower than 50Mg) after the giant
impact will be lager than the Roche lobe radius at 0.05AU. Therefore, if the giant
impact occur near the host star, the planet will be rocky planet in the case of the
impactors’ mass fraction &~ 1 and the high eccentricity e &~ 0.1. On the other hand,
if the giant impact occur in the case of the impactors’ mass fraction is smaller than
1 and the low eccentricity, the planet may keep its water layer.

Table 2: The M. for the giant impact
ma/mi | e | Mis[Mg)]
1 0.01 ~ 30
1/3 0.01 ~ 15
1/3 0.1 ~ 20

4.2 The accretion history of planetesimals

In this section, we discuss the relationship between the initial planet’s luminosity and
the accretion rate. According to Bodenheimer et al. (1985), the accretion luminosity

Lacc is
Te Mr .
Lace = / M g (40)

r2

a

We assume the balance of budget between L. and L, o is equilibrated, Lacc = Lp,o-
And we also assume the accretion radius is equal to the Hill radius and r. is equal to
the planet’s radius from center to the radiative-convective interface. We can derive
the relationship between M and L, o that

Lp,O

M= .
GM, (Reony — i)

(41)
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Figure 9: The mass-radius relationship in the case of giant impact. We set the semi-major
axis @ = 0.05AU, the mass loss efficiency ¢ = 0.1, the water to rock ratio X,/ = 3.
Impactors’ mass ratio ms/m; = 1 and the eccentricity e = 0.01.
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Figure 10: The mass-radius relationship in the case of giant impact. We set the semi-
major axis a = 0.05AU, the mass loss efficiency € = 0.1, the water to rock ratio X,/ = 3.

Impactors’ mass ratio ms/my = 1/3 and the eccentricity e = 0.01.
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Figure 11: The mass-radius relationship in the case of giant impact. We set the semi-
major axis a = 0.05AU, the mass loss efficiency € = 0.1, the water to rock ratio X,/ = 3.
Impactors’ mass ratio ms/m; = 1/3 and the eccentricity e = 0.1.
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We summarize results in Table 3. As a result, if L,o enlarge 10 times, M also
enlarge 10 times. That is the because the term ~ GM,/Rcony changes only factor

times although L, o changes the order of magnitude. Provided that chw—rﬁilu ~ Ry,
then we can derive
: Ly R,\ (M,\"'
M ~ 10772 ) (2] (2] M 42
<1025ergs/s) (R@ Mg @/ year, (42)
T A
~ 1077 —2— ) () M . 4
’ <4>< 102K> (ﬁ@) @/ year 43

This consequence suggests that there is a relationship between the accretion rate M
and the initial condition of the planet, especially its environment of the surface.

Table 3: The relationship among the initial planet’s luminosity Ly, the threshold mass
Mins and the accretion rate M

Lyo lergs/s] | Mins[Ms] | Bp(Mines, Lpo)[Re] | M[Msg/year]
10% 8.5 7.79 1.0 x 1079
10%4 11.5 11.2 1.2 x 1078
10% 14 18.3 2.5 x 1077
1026 23 23.5 2.4 %1076
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5 Conclusion

We derive water-rich planets’ mass-radius relation in the two case:
e Neglect the effect of mass loss (see Fig.2 ).
e Include the effect of mass loss (see Fig.4).

Figure 2 shows that the effect of only shrinkage by cooling dose not enough to
explain observations. If the water to rock ratio is bigger, the planets’ radius become
lager because water component become dominant.

The mass loss has significant effect on the planet’s mass-radius relationship es-
pecially low-mass planets. Low-mass planets lose their water layer and become the
water-poor or rocky planet.
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A Analytical formula of the mass loss

We derive the analytical formula of the water-rich planet’s escaped mass Meg.. Ac-
cording to Valencia et al. (2010), the planet’s mean density rho is constant through
the evolution,

M = 9.0x10%
€ Kiide -1 p -1 a -2
n 44
s (0.1) < 0.8 ) <1g/cm2 <0.05AU> e/ (44)

for t < 0.1Gyr and
: Kego\ !
Moo= 53x10°(55) ( Ot‘ge)
_ -1 —1.23
p a -2 t
4
x <1g/cm2> (0.05AU> (1Gyr> e/s (45)

for ¢t > 0.1Gyr.

Generally, the lower mass planet have the lower mean density than the higher one
because of the effect of gravitational compression. We assume the simple power law
relation between the planet’s mean density and planet’s mass;

5= o (ﬁ]v)k | (46)

where M), is the planet’s mass and My is the Neptune mass (My = 17.1471Mg).
We also take into account the shrinkage of the planet’s radius by cooling. We assume
it is simply described by the power law;

t < TKH,0 — R = Ry, (47)

-

t

tZTKH,O — R—Ro( ) R (48)
TKH,0

where ¢ is time, Ry is the planet’s initial radius, and 7k o is the Kelvin-Helmholtz
timescale at the initial condition of the planet; ko = GM:Z /(2RoLy0), where L, o =
ARR30TS,

The XUV flux irradiated from the host star is

a -2

t<ty = Fxuv =4 (ﬁ) : (49)
t @ a \ 2

bzt = FXUV:A(ler> (1AU) ) (50)
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where Ag = A(to/1Gyr)*.

If we assume the mass loss is worked only by Fxyy from the host star, the mass
loss stars when the protoplanetary disk has been disappeared. Here, we set the time
scale of disappearing the disk 73. Then, we can find

t<ty = M=0, (51)

t>7y = M=————"2
4GKtide P

Here, we summarize assumptions to derive the analytical formula:

1. We assume the planet’s mean density p;

5() = po (ﬂ?)k (TKZ’[))?’Z. (53)

where the power law coefficients k£ and [ are constant through the evolution.

2. The planet’s radius R, is constant until the planet’s age reaches mxm; t <
TKH,0 = R, = Const.

The depletion of the Fxyy starts from ¢g.
The Fxyy begins to decrease after the planetary disk has dissipated; tg > 74

The mass loss starts when the protoplanetary disk has dissipated : t = 7.

S oo @

The mass loss efficiency €, the compensation term by the tidal effect Kijqe and
the semi-major axis a are constant through the evolution.

Note that there are two kinds of origins of planets. One is the hot start planet
and the other is the cold start planet. The cold start planet’s 7k o can be longer
than 74. Here, we part the case of 7xm, < 74 as the hot start planet and the case of
TKH,0 > T4 as the cold start planet.

A.1 The hot start planet

In the case of the hot start planet, we integrate M by three periods for [0, 74], [74, to]
and [to,t]. Therefore we can find that [0, 74] is

M(7q) = M(0) = 0, (54)

and [7q4, to] is

<J\ﬁf\?)>k+1 B (Aﬁ;d))kﬂ _ 1(ng[ {to <2>—3z _Td}’ -
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and [to,t] is

<]]\4w(§))k+l B (]\ﬁ;@)kﬂ

OO N

where
o - ) )
4G Kige M N TKH,0 1AU 1Gyr
We sum up (54), (55) and (56) and then we can find
k+1 k+1
where

1 to\
D = — = _
H 1-3I {to <7d> Td}
1 ¢ « ¢ -3l to =3l
NETEE {t(to> () (%) %)

In fact, po(7a/Tkm0)> in (57) is the planet’s mean density when the disk has been
disappeared. If the planet’s formation follows the ”hot start” scenario, the disk
depletion time scale limits the planet’s mass loss.

A.2 The cold start planet

In the case of the cold start planet, we integrate M by four periods for [0, 74], [Ta, TkH 0], [TKH,0, to]
and [to,t]. Therefore we can find that [0, 74] is

and (74, TkH,0] 18
7 k1 N2
(W) a <%]\j)> = Cc (Tkno — 7d) (61)
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and [TKH70,t0] is

E+1 k+1 -3l
M(tp) B M(TKH70) _ Co to to )
My My 1-3l TKH,0 ’

and [to,t] is
M) E+1 [ M(to) k+1
Mn My
CC t « t =3l t() -3l
= _— t - -
14+ a—3l { (to) <TKH,O> to (TKH,O ’ (63)
where
B 3eA(1+k) 1 / a \2/[ to \“
CC N _4GKtideMN% (1AU> <1Gyr> ' (64)
We sum up (60), (61), (62) and (63) and then we can find
M) E+1 M(0) k+1
il S — | =—= = D
(MN) My CcDe (65)
where
Dc = (Tkn,0 — Ta)

PRI P h
—_— — 7
1-— 3l 0 TKH,0 KH,0
1 ¢ « ¢ -3l ¢ =3l
b (L g (0 . (66)
1+a—3l to TKH,0 TKH,0

A.3 In the case of the low initial luminosity : 7; <ty <

TKH,0

In the case of 7y < tg < TkH,0, We integrate M by four periods for [0, 74], [T, tol, [to, TKH,0]
and [Tkm,0,t]. Therefore we can find that [0, 74] is

M(rq) = M(0) = 0 (67)
and [Td,to] is
k+1 k+1
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and [tO;TKH,O] is
M(rgmo) " [ M(to) Frl _ G i &0\ ¢ . (69)
My M el KA s 0>
and [TKH,O,t] is
M(t) k+1 B M(TKH,O) k+1
My My

Cr e/t ¥ T
= L (= - KHO 70
1+a_3l{ (tO) (TKH,O) RO Ty ’ (70)

where
3eA(1+k) 1 a \~2( top \“
= — — : 1
Cr 4G KoMy po <1AU> <1Gyr (1)
We sum up (67), (68), (69) and (70) and then we can find
M(t) k+1 M(O) k+1 B

Gie) () - om 7

where
Dy = (to—7a)

N 1 TKH,0 “ "
- I, _
T a | TKHO o 0

1 t\“ t -3l TKH,0 \
— il = — _ 73
+1+a_3l{ (5) () - (B2) 4 @)

A.4 Estimate the threshold mass M,

Provided that we use the parameters which we use in this work. In our calculation,
our water-rich planet’s mean density is

ML " 0.6
p=3x10"%( >~ : 4
p=3x10 <MN) <5 X 1O7years> (74)

when we assume L, ~ 10%erg/(s-em?), a = 0.05AU and X, = 3. In the case of
the hot start, we can obtain

Cp = —52x1071°
x(i) A 1+k Kiide -1
0.1/ \ 29.7erg/(s - cm?) 2 0.8
-1 5 -1.23
« po ( a ) o . (75)
0.01g/cm3 0.05AU 0.1Gyr
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We set 74 = 107years, ty = 10%years and ¢t = 10'%years. Then we can obtain
Dy = 2.1x10%. (76)
If M(t = 10years) = 0 and k = 1, we can obtain the threshold mass
Mipns = 1.1My = 18 Mg, (77)

In the case of the cold start, we can obtain

Co = —17x1071¢
x(i) A 1+k Kiide -1
0.1/ \ 29.7erg/(s - cm?) 2 0.8
) 20 -1 ( a )_2 o —1.23‘ -
0.03g/cm? 0.05AU 0.1Gyr

We set ko = 5 % 107years, 74 = 107years, tg = 108years and ¢t = 10'%years. Then
we can obtain

Dc = 5.0x10% (79)
If M(t = 10"years) = 0 and k = 1, we can obtain the threshold mass
Mis = 0.93My = 16Mg,. (80)

On the other hand, if we apply the formula derived by Valencia et al. (2010), we can
obtain the threshold mass
Mipns = 53M@ (81)

for pg = 0.1g/cm?®, which is the water-rich planet’s mean density at ¢t ~ 10%years.
Comparing with our numerical result, our formula is more accurate than the pi-
oneering work. Note that these formula do not apply if the planet’s composition
significantly varies. If the planet’s composition has vary, the planet’s mean density
profile must change. In that case we have to calculate by numerical solution. In fact,
the time evolution of the water to rock ratio X,/ has large effect on the My, value.
If the rocky component become rich, the planet’s radius tend to shrink. and then
the effect of mass loss becomes small. This effect causes that Myy,s derived by our
analytical formula is larger than M;y,s derived by our numerical study.
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B Analytical formula of the giant impact

We consider the giant impact event as two impactors having a collide each other.
Here we call the higher mass impactor 71”7, the lower mass impactor ”2” and the
planet made by the two impactors’ collision ”3”. m;(i = 1,2, 3) represent planets’
masses and 7;(¢ = 1,2, 3) represent planets’ radii. We assume mg = mj + mg. The

gravitational energy represent Eg(m;) = —(iGm2 /r;. We use Vimp ~ ,/v?n + 02,
where vj, is typically ~ evkep. And we also use ma/my = v, (< 1) and ro/r1 = 7.
Then we can derive

<1_’_C2’Y1%n,)_ TYm 1+’Ym+<vin )2
C1 Cl(l + ’Ym) 1+ Vesc,1

where Vese,1 = /2Gm1/71.

¢; is typically ~ 1. As the planet’s mass become large or cool, (; become small.
Therefore we can find (5 > (; if the planet’s age is the same.
(82) suggests the requirement to be united after the collision. If vy, satisfy the

condition;
1 72 Tm
Vin > U 1+ — + R — , 83
in > esc,l\/( ’Ym) (Cl o i s (83)

the planet cannot be bound to its gravity because of E,(m3) > 0. For example, in
the case of m1 = msy, we can derive

1 in ?
Eg(m3 = 2my) = [2 24 {1 * <U:sc,1) }

And we can also estimate the radius r3 after the collision event;

T3 _ 8(3 (85)

71 1 in a8
41— =1+ < ! >
C1 Vesc,1

Vin < Vesc,1V 4¢ — 1. (86)

Ey(ms) = Ey(ma)  (82)

Ey(ma). (84)

where v;, requires
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