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Abstract

近年の観測技術の発達により、検出された系外惑星の数は 700を超えた。地球質量
の 30倍以下という比較的小質量の惑星（以降「スーパーアース」と表記する）の発見
数も増加しており、31個のスーパーアースについては質量に加えて半径も推定されて
いる（2012年 8月 23日現在、www.exoplanet.euより）。それらのスーパーアースの中
には、水に富むと考えられるスーパーアース（例えばGJ1214b）もある（e.g. Rogers
& Seager 2010; Nettelmann et al. 2011）。発見された系外惑星を質量―半径関係図上
に表してみると、温度の効果を考慮しない状態方程式を用いて求めた理論的な質量―
半径関係（e.g. Seager et al. 2007）と比べて、質量とともに半径が増加するという傾
向は同じだが、発見された系外惑星の方がその増加率が大きいことに気づく。一方、こ
れまでに発見されたスーパーアースは中心星近傍に存在しているため、強烈なX線や
UV（XUV）の照射に晒され、質量散逸（大気散逸）を経験してきたはずである。し
かし、その効果に対する質量―半径関係図上での系統的な議論はこれまでにされてい
ない。今後、多数発見されると期待されるスーパーアースの質量と半径の傾向を理解
することは、惑星の組成や起源を考察する上で重要である。本研究では水に富むスー
パーアースに注目し、岩石コアを水のマントルが覆う惑星の熱進化計算を行った。そ
して、(i)中心星放射による加熱の効果を考慮した惑星の質量―半径関係と、(ii)質量
散逸を考慮した場合の質量―半径関係をそれぞれ求めた。その結果、(i)中心星放射に
よる加熱の効果を考慮した理論的な質量―半径関係と発見された系外惑星のそれを比
較すると、軽い惑星ほど水成分が少ない傾向にあることがわかった。また、(ii)質量散
逸を考慮した場合、初期に低質量で半径が大きかった惑星は、水成分が散逸して質量
が小さくなりやすいことがわかった。このことから、惑星の水成分が散逸することで
岩石成分の割合が大きくなり、水成分の層が薄くなって惑星半径が小さくなることも
わかった。これらの結果は、惑星の質量―半径関係図上で水に富むスーパーアースが
存在しうる領域に制限をあたえることができる．
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1 Introduction

Recent progress in the observation enabled us to find over 700 exoplanets, including
low-mass exoplanets whose masses are less than 30M⊕. According to exoplanets’
database (www.exoplanet.eu), we can know 31 low-mass planets’ masses and radii.
Given the planet’s mass and radius, we find the planet’s mean density. The planet’s
mean density has a clue to understand the planet’s composition and origin.

Increasing the number of exoplanets gives us the useful statistical information.
To analyze the statistical information, we show the exoplanets on the mass-radius
relationship. Comparing with the mass-radius relation ship of the solid planets (e.g.
Seager et al. 2007, Fortney et al. 2007), we fan find as the planet’s mass increase its
radius also increase while the radius increasing rate of exoplanets is steeper than that
of solid planets. To explain the difference, we need to consider the planet’s expansion
due to the thermal effect. Short-period exoplanets must have experienced the mass
loss because of the intense stellar X-ray and UV (XUV) flux. However, effect of the
mass loss on the mass-radius relationship have not discussed yet. It is important
to understand the mass-radius relationship of the low-mass planet for discussing the
planet’s composition and origin.

In this study, we calculate the thermal evolution and mass loss of the water-rich
planet which is consisted of the rocky core and the water mantle. And we derive (i)
the mass-radius relationship of the water-rich planet taking into account the effect of
irradiation of the host star and (ii) the mass-radius relationship taking into account
the mass loss of the planet.
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2 Method

We assume the planet is spherically-symmetric three layer structure which is consisted
of isothermal rocky core, convective water layer and radiative water vapor atmosphere
form inside out. We deal with the thermal evolution and the mass loss driven by
stellar XUV flux simultaneously.

2.1 Atmospheric model

We assume the planet’s atmosphere has plain-parallel radiative equilibrium structure.
We make use of radiative momentum equations derived by Guillot (2010);

dHv

dm
= κpvJv, (1)

dKv

dm
= κrvHv, (2)

dHth

dm
= κpth (Jth −B) , (3)

dKth

dm
= κrthHth, (4)

κpvJv + κpth (Jth −B) = 0, (5)

where H, J,K are the moment of radiative transfer equation whose subscript means
wavelength ( v: visible, th: thermal ), m is atmospheric mass coordinate, B is the
Planck function, and κ is the mean opacity;

κpv :=

∫
v
κνJνdν

/∫
Jνdν, (6)

1

κrv
:=

∫
v

1

κν

dHν

dm
dν

/∫
dHν

dm
dν, (7)

κpth :=

∫
th
κνJνdν

/∫
Jνdν, (8)

1

κrth
:=

∫
th

1

κν

dHν

dm
dν

/∫
dHν

dm
dν, (9)

respectively (subscript ”v” means visible light frequency, ”th” means thermal or
infrared light frequency). Practically in this paper, we deal with these opacities as
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the Planck mean opacities or the Rosseland mean opacities;

κpv =

∫
κνBν(T = T⋆)dν

/∫
Bν(T = T⋆)dν, (10)

1

κrv
=

∫
1

κν

dBν(T = T⋆)

dT
dν

/∫
dBν(T = T⋆)

dT
dν, (11)

κpth =

∫
κνBν(T = Tatm)dν

/∫
Bν(T = Tatm)dν, (12)

1

κrth
=

∫
1

κν

dBν(T = Tatm)

dT
dν

/∫
dBν(T = Tatm)

dT
dν, (13)

where Bν(T ) is the Planck function, T⋆ is the temperature of host star, and Tatm is
the temperature of the atmosphere respectively. We adopt HITRAN opacity data
fitted by the least square method;

κpv = 697

(
P

1bar

)2.07E−2

(14)

κrv = 0.0137

(
P

1bar

)0.983

(15)

κpth = 365

(
P

1bar

)8.88E−3( T

1000K

)−2.06

, (16)

κrth = 0.240

(
P

1bar

)0.929( T

1000K

)−2.03

, (17)

where P is pressure, T is temperature respectively. We fit HITRAN opacity data
table at P = 1, 10, 100, 1000 and T = 1000, 2000, 3000K

We assume Eddington approximation;

Kv =
1

3
Jv, (18)

Kth =
1

3
Jth. (19)

The boundary condition of the moment equation is

H = Hv +Hth =
1

4π
σT 4

int, (20)

Hv(m = 0) = − 1√
3

1

4π
σT 4

irr, (21)

where Tint is intrinsic temperature, Tirr is irradiation temperature, respectively. And
upper boundary condition between J and H, we use
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Hv(m = 0) = − 1√
3
Jv(m = 0), (22)

Hth(m = 0) =
1

2
Jth(m = 0). (23)

We treat the bottom of atmosphere as the interface between radiative and convective
zone. We use Schwarzschild criterion to determine the interface. If the temperature
gradient ∇ := d lnT/d lnP is lager than adiabatic temperature gradient ∇ad, i.e.
∇ > ∇ad, the heat transport system by the convection become dominate rather
than by the radiation. We use (Pad, Tad) as the boundary condition of the interior
structure of the planet.

We calculate the pressure and optical depth by hydrostatic equilibrium;

∂P

∂m
= g, (24)

∂τ

∂m
= κrth. (25)

We assume the atmosphere is plain-parallel approximation. The optical depth is
evaluated by κrth, and the planetary radius is determined at τ = 2/3. The atmospheric
thickness z is evaluated by

z =

∫ τad

2/3

H

τ
dτ =

R
µg

∫ τad

2/3

T

τ
dτ, (26)

where H is scale hight H := dr/d lnP , R is gas constant, µ is molecular weight and
τad is the optical depth at the interface between radiative layer and convective layer.
We assume that atmosphere’s gas is behaved as an ideal gas.

2.2 Interior structure

The boundary condition is determined by the atmospheric model; (Pad, Tad), deter-
mined by the Schwarzschild criterion; ∇ = ∇ad. We assume the interior structure of
the planet is spherically-symmetric, hydrostatic equilibrium;

∂P

∂Mr
= −GMr

4πr4
, (27)

∂r

∂Mr
=

1

4πr2
, (28)

where Mr is interior mass coordinate, r is the distance from the planet center, P is
the pressure, ρ is the density and G is the gravitational constant respectively.
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In the water layer, we also assume the temperature structure of the planet’s
interior follows adiabatic temperature; T = T (P, S), where T is the temperature, P
is the pressure and S is the entropy respectively. The equation of state we adopt is
SESAME water EOS table whose serial number is 7150-301.

In the rock core, we have an assumption that rocky core is isothermal. We adopt
the equation of state of rock is

P = ρ4.406 exp
(
−6.579− 0.176ρ+ 0.00202ρ2

)
, (29)

where ρ is in g/cm3 and P is in Mbar, composed of 38% SiO2, 25% MgO, 25% FeS,
and 12% FeO. (Hubbard & Marley (1989))

We integrate straightforward from outer boundary (Pad, Tad) and iterate until the
inner boundary is consistent with r = 0,m = 0.

We neglect the presence of any radioactive heat source in the interior. Therefore,
the thermal evolution is determined by the equation of energy conservation;

∂L

∂Mr
= −T

(
∂S̄

∂t

)
, (30)

where L is the intrinsic luminosity, S̄ is the entropy per unit mass (specific entropy),
and t is time. To derive the simplified formula, we integrating this equation by mass,

−Lp =

(
∂S̄

∂t

)∫ Mp

Mc

Tdm+ CvMc
∂Tc

∂t
. (31)

Note that the specific entropy is constant through the convective region and the core
is isothermal. Lp is total intrinsic luminosity of the planet, Cv is the heat capacity
of the rocky core, Mc is the mass of the core and Tc is the temperature of the rocky
core respectivery. The formula of Lp is

Lp :=

∫ Mp

0

∂L

∂Mr
dMr = 4πR2

pσT
4
int, (32)

where Mp is the total mass of the planet, Rp is the planet radius, and Tint is the
intrinsic temperature. We assume Cv = 107 ergs/(K·g).

2.3 Mass loss

Erkaev et al. (2007) derived energy-limited XUV driven hydrodynamic escape;

Ṁ = −ϵFXUVRpπR
2
exo

GMpKtide
, (33)
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where Ṁ is the mass loss rate per second, ϵ is the mass loss efficiency, FXUV is X-ray
and UV flux of the host star, Rp is the radius of the planet, Rexo is the exobase of the
planet, Mp is the mass of the planet, Ktide is Roche-lobe effect, and G is gravitation
constant. We suppose that the host star is G-star and FXUV is

FXUV = 29.7

(
t

1Gyr

)−1.23 ( a

1AU

)−2
erg/(s · cm2), (34)

derived by Ribas et al. (2005) when the host star’s age t is 0.1Gyr ≤ t ≤ 6.7Gyr. The
XUV flux before 0.1 Gyr is uncertain. We assume the XUV flux is constant before
0.1 Gyr;

FXUV = 504
( a

1AU

)−2
erg/(s · cm2), (35)

and we also assume that the XUV flux is decline following the power law; t−1.23. The
formula of Ktide is derived by Erkaev et al. (2007);

Ktide =
(η − 1)2(2η + 1)

2η3
, (36)

where δ = Mp/M⊙, λ = a/Rp, η = rRL/Rp (rRL means Roche-lobe radius; rRL ≈
(δ/3)1/3d) respectively. Rexo and ϵ are related to the atmospheric composition and
the chemical reaction. We assume Rexo = Rp and ϵ = 0.1. We calculate quasi-static
thermal evolution and mass loss.

2.4 The procedure to calculate the interior structure and
evolution of the planet.

The planet’s radius Rp is determined by the planet’s mass Mp, the planet’s specific
entropy S̄ and the water to rock ratioXw/r. The planet’s radius Rp is described by the
sum of the planet’s convective zone radius Rconv and the thickness of the atmosphere
z. That is, Rp = Rconv + z. We integrate the hydrostatic equations by 4th-order
Runge-Kutta method and use shooting method to determine the planet’s convective
zone radius Rconv. The planet’s specific entropy S̄ is the important parameter to
determine the planet’s thermal evolution. To calculate S̄, we integrate the radiative
momentum equations of the planet’s atmosphere.

To calculate the thermal evolution of the planet, we derive the evolution time ∆t
which correspond to ∆S̄. We also calculate the mass loss M(t+∆t)−M(t) = Ṁ∆t.

Our interior structure code is checked by Valencia et al. (2007) and the atmo-
spheric code is checked by the analytical formula derived by Guillot(2010).
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3 Result

3.1 The atmospheric structure

Figure 1 shows the planet’s atmospheric structure. We calculate the planet’s atmo-
spheric structure composed of water provided that the planet’s mass is 10M⊕, its
semi-major axis is 0.05AU and water to rock ratio is 3. We parametrized the planet’s
luminosity Lp,0 = 1023, 1024, 1025, 1026 ergs/s. The bottom of the atmosphere is de-
termined by Schwarzschild criterion; ∇ = ∇ad. We find as the planet lose its heat, the
pressure at the interface between radiative layer and convective layer, Pad, becomes
large. This trend corresponds to losing planet’s entropy by the thermal evolution of
the planet.

3.2 Planetary evolution without mass loss

We show results which the water-rich planet experiences shrinkage due to the cooling.
Figure 2 shows the mass-radius relationship of the water-rich planets. We derive

isochron lines of 10 giga years. We assume the water to rock ratio Xw/r =0.1, 0.3, 1,
3 and 10. These relationships shows following two features:

• Planets’ radii have weak dependence on their mass at Xw/r ≥ 1.

• As masses of planets whose Xw/r = 0.1 become large, their radii also become
large. However, they have gentler slop than the rocky planet’s slope on the
mass-radius relationship.

Here, we compare with the mass-radius relationship and the observed exoplanets.
We can find that the slope of observations is steeper than that of the water-rich
planets. This suggests that as planets become massive, planets seem to have more
volatile compositions.

3.3 Planetary evolution with mass loss

In this subsection, we discuss the water-rich planets’ evolution taking into account the
energy limited hydrodynamic escape. Figure 3 shows the time evolution of planets’
masses (upper) or radii (downer) including thermal evolution and mass loss simulta-
neously. We set the parameters that the initial luminosity of the planet is 1025 erg/s,
the semi-major axis is a = 0.05AU, the water to rock ratio Xw/r = 3 and the mass
loss efficiency ϵ = 0.1. We show 4 examples: planets masses are 14, 15, 20 and 30M⊕.
In this case, planets Mp > 14M⊕ remain their water layers and Mp < 14M⊕ lose
their water layers at all. 14, 15 and 20M⊕ planets have typical time scales when their
mass lose steeply. These time scales are < 107 years for 14M⊕ planet, ∼ 107 years
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Figure 1: This figure shows atmospheric profile. The x-axis is the temperature [K] and
the y-axis is the pressure [bar]. We set parameters Mp = 10M⊕, a = 0.05AU, and the
water to rock ratio Xw/r = 3. We set the planet’s luminosity Lp,0 = 1023(pink), 1024(blue),
1025(green) and 1026(red). We calculate until the Schwarzschild criterion; ∇ = ∇ad.
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Figure 2: This figure shows the mass-radius relationship of water-rich planets. The x-axis
is planets’ mass [M⊕] and the y-axis is planets’ radii [R⊕]. We set parameters a = 0.05AU,
water/rock = 0.1, 0.3, 1, 3 and 10. These isochron lines represent 10 giga years.
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for 15M⊕ planet and ∼ 108 years for 20M⊕ planet. At these time scales, planets’
radii also slightly expand due to weaken the effect of the gravitational compression
comparing with the effect of the thermal expansion. Because of Ṁ ∝ R3

p/Mp, Ṁ
decreases by order of magnitude after experienced the steep mass loss. After the
steep mass loss, the planet’s water to rock ratio Xw/r ∼ 0.1. Therefore the planet’s
radius gradually shrink due to the effect of the rocky core. These results suggest
that the effect of mass loss has significant effect on the planetary composition for the
low mass planet, especially ∼ 10M⊕. The planet’s radius shrinks because the rock
component become dominant. That is, the planetary radius varies due to not only
thermal evolution but also mass loss.

Figure 4 shows the planets’ evolutionary tracks on the mass-radius relationship.
We set the initial planet’s luminosity 1025 ergs/s, the semi-major axis is 0.05AU, the
mass loss efficiency is 0.1 and the water to rock ratio is 3. We can find the radius of
14M⊕ planet is nearly Roche lobe radius. If the planet’s radius larger than its Roche
lobe radius, the planet can be collapsed by the tidal force of the host star. The mass
loss model we adopt cannot apply if the planet’s radius is larger than its Roche lobe
radius. If the planet’s radius is larger than its Roche lobe radius, the planet’s water
layer will be quickly evaporated and turned to be the necked rocky core planet. In
this paper we deal with the case the planet’s radius is larger than its Roche lobe
radius as the planet is removed its water layer.
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Figure 3: These figure shows time evolution of the planets’ masses. (Upper) The x-
axis is time [year] and the y-axis is planets’ masses [M⊕]. (Downer) The x-axis is time
[year] and the y-axis is planets’ masses [M⊕]. We set parameters Lp,0 = 1025ergs/s,
a = 0.05AU, Xw/r = 3 and ϵ = 0.1. The red lines mean the planets whose planets’ water
mantle will evaporate at all and the brown lines connecting to red lines means necked rocky
core. The blue lines means the planets which remain water layers for 10 giga years.
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3.4 The dependence on the parameters

In this subsection, we evaluate the dependence on parameters : (1) the initial planet’s
luminosity Lp,0, (2) the semi-major axis a, (3) the mass loss efficiency ϵ and (4) the
water to rock ratio Xw/r. In this paper, we define the Mthrs as the initial planet’s
mass whose water composition is evaporated at all after 10 giga years. If the mass
loss has strong effects, the Mthrs become bigger. We use the threshold mass Mthrs

to evaluate the sensitivity of parameters; the initial planet’s luminosity Lp,0, the
semi-major axis a, the mass loss efficiency ϵ and the initial water to rock ratio Xw/r.

Some water-rich planets become lager than the Roche lobe in their evolution. If
the planet’s radius is lager than the Roche lobe, the planet will be experienced the
dynamical mass loss. In that case, we consider that the planet becomes the rocky
planet and such the case represents the grey dotted-line in the mass-radius diagram.

In fact, the semi-major axis and the mass loss efficiency are not constant values
through the planetary lifetime because the planet’s situation can change such as
orbital evolution. However these problem are beyond the control in this paper.

1. The sensitivity of the initial planet’s luminosity Lp,0

Figure 5 shows mass-radius relationship taking into account the mass loss of the
planet. We change the initial planet’s luminosity 1023, 1024, 1025 and 1026 ergs/s
and set the semi-major axis a = 0.05AU, the water to rock ratio Xw/r = 3 and
the mass loss efficiency ϵ = 0.1 respectively. As Lp,0 become bigger, the planet’s
radius become larger at the initial condition. The planet which has larger radius
loses more its mass than the smaller one. Therefore, the lager Lp,0 causes the
more mass loss of the planet. If the planet’s mass is & 30M⊕, the mass loss
does not have a significant effect on the mass-radius relationship. Because the
contraction by the planet’s gravity has more efficient than the expansion by the
thermal effect for such a high mass planet.

2. The sensitivity of the semi-major axis a

Figure 6 shows the mass-radius relationship taking into account the mass loss
of the planet, taking notice on the difference of the semi-major axis. We change
the semi-major axis 0.01, 0.05 and 0.1 AU and set the initial planet’s luminosity
Lp,0 = 1025ergs/s, the water to rock ratio Xw/r = 3 and the mass loss efficiency
ϵ = 0.1 respectively. The dotted-lines are the initial states of the planets, solid-
lines are the planets whose age are 10 giga year and dashed lines are Roche-lobe
radius. If the planet is close to its host star, the planet receive intense irradiation
and XUV flux. Moreover the closer planet has the smaller Roche-lobe radius
and then Ktide becomes smaller, which means Ṁ become bigger. These two
effect make the planet’s evaporation strong.

3. The sensitivity of the initial water to rock ratio Xw/r
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Figure 5: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [M⊕], and the y-axis is planets’ radii [R⊕]. The dotted lines mean the
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Figure 7 shows the mass-radius relationship taking notice of the difference of
water to rock ratio. We change the water to rock ratio 0.1, 1, 3 and 10 and set the
initial planet’s luminosity Lp,0 = 1025ergs/s, the semi-major axis a = 0.05AU
and the mass loss efficiency ϵ = 0.1 respectively. If the planet’s Xw/r is small,
the planet’s composition is dominated by rock. Therefore, the mass loss does
not work effective.

4. The sensitivity of the mass loss efficiency ϵ

Figure 8 shows the mass-radius relationship taking into account the mass loss
of the planet, taking notice on the difference of the mass loss efficiency ϵ. We
change the mass loss efficiency 0.01, 0.1 and 1 and set the initial planet’s lu-
minosity Lp,0 = 1025ergs/s, the semi-major axis a = 0.05AU and the water
to rock ratio Xw/r = 3 respectively. The red-dotted line is the initial state
of the planets and gray dotted-line is the Roche-lobe radius. The solid-lines
are the planets whose age are 10 giga year. The lines’ color, green, blue and
purple represent the difference of ϵ = 0.01, 0.1 and 1 respectively. Lager mass
loss efficiency causes lager mass loss. On the other hand, when ϵ = 0.01, the
planet whose initial state’s radius is nearly the Roche-lobe radius remains its
water. However, if the planet’s radius is lager than the Roche-lobe radius, the
planet does not bound its body by own gravity. Hence the planet lose its mass
quickly, but in fact our mass loss model does not apply when the planet’s ra-
dius is lager than the Roche-lobe radius because the planet have experienced
non-quasi-static hydrodynamic escape. In Fig.8, the green dotted-line on the
green solid-line represent the planets whose radii are lager than the Roche-lobe
radius in their evolution.

Here, we summarize Mthrs in Table 1

• The initial planet’s luminosity Lp,0

If we enlarge the Lp,0 order of magnitude, it makes the Mthrs large factor ∼ 2.

• The semi-major axis a

If we change semi-major axis a by 10 times, the Mthrs change ∼ 10 times.
Although the FXUV change as intense as 100 times and the Roche lobe radius
changes, the high mass planet tend to contract and sustain mass loss.

• The water to rock ratio Xw/r

If we consider the same planet’ mass, large Xw/r planet tend to inflate and lose
its mass more than small Xw/r one. The Mthrs changes factor ∼ 5 between
Xw/r = 0.1 and 10.

• The mass loss efficiency ϵ

If we enlarge ϵ from 0.01 to 10, Mthrs changes factor ∼ 3.
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Figure 7: This figure shows the mass-radius relationship of the planets. The x-axis is
planets’ masses [M⊕], and the y-axis is planets’ radii [R⊕]. We assume the initial planet’s
luminosity Lp = 1025ergs/s, the semi-major axis a = 0.05AU, the mass loss efficiency
ϵ = 0.1. Solid lines are the conditions after 10 giga years. We change the water to rock
ratio Xw/r = 0.1 (red line), 1 (green line), 3 (blue line) and 10 (purple line). Dashed line
is the Roche-lobe radius.
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These results suggest that the mass loss of the planet has a significant effect on
the ∼ 10M⊕ planet. Such low mass planet are the transition point between Super-
Earths and Hot-Jupiters. Comparing with values of Mthrs, the semi-major axis a has
the largest effect on the mass loss. On the other hand, the initial planet’s luminosity
Lp,0 has smaller effect on the mass loss than other parameters.

Table 1: The dependences of parameters of the threshold masses
Lp,0 [ergs/s] 1023 1024 1025 1026

Mthrs [M⊕] 8.5 11.5 14 23
a[AU] 0.01 0.05 0.1

Mthrs [M⊕] 86 14 6.3
Xw/r 0.1 1 3 10

Mthrs [M⊕] 4.9 7.5 14 26.9
ϵ 0.01 0.1 1

Mthrs [M⊕] 11.5 14 32
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4 Discussion: implications to the origin

In this section, we discuss implications to the origin of the water-rich planet.

4.1 The giant impact

In this section, we discuss the initial condition of the planet. Here we discuss the
planet formed by giant impact.

We calculate the gravitational energy of the planet Eg(Mp) and the impact energy
Eimp;

Eimp =
1

2
µv2col, (37)

vimp =

√
v2in + v2esc −

2G(m1 +m2)

d
, (38)

where µ = m1m2/(m1 + m2) that m1 and m2 are the impactors’ masses, vimp is
the impact velocity, vesc is the escape velocity and d is the initial distance between
impactors and vin is the relative velocity between impactors when the distance be-
tween them is d. We assume d = 10rHill, vin = evkep (e : the eccentricity, vkep : the
keplerian velocity) and Mp = m1 +m2 here. We estimate the planet’s gravitational
energy after the giant impact,

Eg(m1) + Eg(m2) + Eimp = Eg(Mp). (39)

We derive the planet’s radius to satisfy the gravitational energy after the giant impact.
And we also calculate the thermal evolution and the mass loss over 10 giga years to
derive the mass-radius relationship of the water-rich planets.

4.1.1 Numerical results

We adopt the 1 giga years isochron line data as the reference mass, radius and grav-
itational energy data of the planet. Impactors’ masses are m1,m2 and their radius
are r1, r2 respectively.

• In the case of m1 = m2

Figure 9 shows the mass-radius relationship in the case of considering the giant
impact on m1 = m2. We assume the eccentricity e = 0.01 and the semi-major
axis a = 0.05AU. If the giant impact event occurs near the host star, the small
mass planet will be evaporated at all. That is because the smaller mass planet
has the smaller Roche lobe radius.
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• In the case of m1 = 3m2 and e = 0.01

Figure 10 shows the mass-radius relationship in the case of considering the giant
impact on m1 = 3m2. We assume the eccentricity e = 0.01 and the semi-major
axis a = 0.05AU. Mthrs of this case is smaller than the case of m1 = m2. That
is because in the case of m1 = 3m2, the gravitational energy is more deep than
the case of m1 = m2.

• In the case of m1 = 3m2 and e = 0.1

Figure 11 shows the mass-radius relationship in the case of considering the giant
impact on m1 = 3m2. We assume the eccentricity e = 0.1 and the semi-major
axis a = 0.05AU. Mthrs of this case is larger than the case of e = 0.1.

We summarize the Mthrs for giant impact in Table 2. If we consider m2/m1 = 1
and e = 0.1 then the planet’s radius (whose mass is lower than 50M⊕) after the giant
impact will be lager than the Roche lobe radius at 0.05AU. Therefore, if the giant
impact occur near the host star, the planet will be rocky planet in the case of the
impactors’ mass fraction ≈ 1 and the high eccentricity e ≈ 0.1. On the other hand,
if the giant impact occur in the case of the impactors’ mass fraction is smaller than
1 and the low eccentricity, the planet may keep its water layer.

Table 2: The Mthrs for the giant impact
m2/m1 e Mthrs[M⊕]

1 0.01 ∼ 30
1/3 0.01 ∼ 15
1/3 0.1 ∼ 20

4.2 The accretion history of planetesimals

In this section, we discuss the relationship between the initial planet’s luminosity and
the accretion rate. According to Bodenheimer et al. (1985), the accretion luminosity
Lacc is

Lacc =

∫ rc

ra

−GMr

r2
Ṁdr. (40)

We assume the balance of budget between Lacc and Lp,0 is equilibrated, Lacc = Lp,0.
And we also assume the accretion radius is equal to the Hill radius and rc is equal to
the planet’s radius from center to the radiative-convective interface. We can derive
the relationship between Ṁ and Lp,0 that

Ṁ =
Lp,0

GMp

(
R−1

conv − r−1
Hill

) . (41)
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Figure 9: The mass-radius relationship in the case of giant impact. We set the semi-major
axis a = 0.05AU, the mass loss efficiency ϵ = 0.1, the water to rock ratio Xw/r = 3.
Impactors’ mass ratio m2/m1 = 1 and the eccentricity e = 0.01.
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Figure 10: The mass-radius relationship in the case of giant impact. We set the semi-
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Impactors’ mass ratio m2/m1 = 1/3 and the eccentricity e = 0.01.
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Figure 11: The mass-radius relationship in the case of giant impact. We set the semi-
major axis a = 0.05AU, the mass loss efficiency ϵ = 0.1, the water to rock ratio Xw/r = 3.
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We summarize results in Table 3. As a result, if Lp,0 enlarge 10 times, Ṁ also
enlarge 10 times. That is the because the term ∼ GMp/Rconv changes only factor
times although Lp,0 changes the order of magnitude. Provided that R−1

conv−r−1
Hill ∼ Rp,

then we can derive

Ṁ ∼ 10−7

(
Lp,0

1025ergs/s

)(
Rp

R⊕

)(
Mp

M⊕

)−1

M⊕/year, (42)

∼ 10−7

(
Tint

4× 102K

)4( ρ̄

ρ̄⊕

)−1

M⊕/year. (43)

This consequence suggests that there is a relationship between the accretion rate Ṁ
and the initial condition of the planet, especially its environment of the surface.

Table 3: The relationship among the initial planet’s luminosity Lp,0, the threshold mass
Mthrs and the accretion rate Ṁ

.

Lp,0 [ergs/s] Mthrs[M⊕] Rp(Mthrs, Lp,0)[R⊕] Ṁ [M⊕/year]
1023 8.5 7.79 1.0× 10−9

1024 11.5 11.2 1.2× 10−8

1025 14 18.3 2.5× 10−7

1026 23 23.5 2.4× 10−6
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5 Conclusion

We derive water-rich planets’ mass-radius relation in the two case:

• Neglect the effect of mass loss (see Fig.2 ).

• Include the effect of mass loss (see Fig.4).

Figure 2 shows that the effect of only shrinkage by cooling dose not enough to
explain observations. If the water to rock ratio is bigger, the planets’ radius become
lager because water component become dominant.

The mass loss has significant effect on the planet’s mass-radius relationship es-
pecially low-mass planets. Low-mass planets lose their water layer and become the
water-poor or rocky planet.
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A Analytical formula of the mass loss

We derive the analytical formula of the water-rich planet’s escaped mass Mesc. Ac-
cording to Valencia et al. (2010), the planet’s mean density ¯rho is constant through
the evolution,

Ṁ = 9.0× 1010

×
( ϵ

0.1

)(
Ktide

0.8

)−1( ρ̄

1g/cm2

)−1 ( a

0.05AU

)−2
g/s (44)

for t < 0.1Gyr and

Ṁ = 5.3× 109
( ϵ

0.1

)(
Ktide

0.8

)−1

×
(

ρ̄

1g/cm2

)−1 ( a

0.05AU

)−2
(

t

1Gyr

)−1.23

g/s (45)

for t ≥ 0.1Gyr.
Generally, the lower mass planet have the lower mean density than the higher one

because of the effect of gravitational compression. We assume the simple power law
relation between the planet’s mean density and planet’s mass;

ρ̄ = ρ0

(
Mp

MN

)k

. (46)

where Mp is the planet’s mass and MN is the Neptune mass (MN = 17.1471M⊕).
We also take into account the shrinkage of the planet’s radius by cooling. We assume
it is simply described by the power law;

t < τKH,0 =⇒ R = R0, (47)

t ≥ τKH,0 =⇒ R = R0

(
t

τKH,0

)−l

, (48)

where t is time, R0 is the planet’s initial radius, and τKH,0 is the Kelvin-Helmholtz
timescale at the initial condition of the planet; τKH,0 = GM2

p /(2R0Lp,0), where Lp,0 =
4πR2

0σT
4
int,0.

The XUV flux irradiated from the host star is

t < t0 =⇒ FXUV = A0

( a

1AU

)−2
, (49)

t ≥ t0 =⇒ FXUV = A

(
t

1Gyr

)α ( a

1AU

)−2
, (50)
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where A0 = A(t0/1Gyr)α.
If we assume the mass loss is worked only by FXUV from the host star, the mass

loss stars when the protoplanetary disk has been disappeared. Here, we set the time
scale of disappearing the disk τd. Then, we can find

t < τd =⇒ Ṁ = 0, (51)

t ≥ τd =⇒ Ṁ = − 3ϵ

4GKtide

FXUV

ρ̄
. (52)

Here, we summarize assumptions to derive the analytical formula:

1. We assume the planet’s mean density ρ̄;

ρ̄(t) = ρ0

(
M(t)

MN

)k ( t

τKH,0

)3l

. (53)

where the power law coefficients k and l are constant through the evolution.

2. The planet’s radius Rp is constant until the planet’s age reaches τKH,0; t <
τKH,0 =⇒ Rp = Const.

3. The depletion of the FXUV starts from t0.

4. The FXUV begins to decrease after the planetary disk has dissipated; t0 > τd

5. The mass loss starts when the protoplanetary disk has dissipated : t = τd.

6. The mass loss efficiency ϵ, the compensation term by the tidal effect Ktide and
the semi-major axis a are constant through the evolution.

Note that there are two kinds of origins of planets. One is the hot start planet
and the other is the cold start planet. The cold start planet’s τKH,0 can be longer
than τd. Here, we part the case of τKH,0 ≤ τd as the hot start planet and the case of
τKH,0 > τd as the cold start planet.

A.1 The hot start planet

In the case of the hot start planet, we integrate Ṁ by three periods for [0, τd], [τd, t0]
and [t0, t]. Therefore we can find that [0, τd] is

M(τd)−M(0) = 0, (54)

and [τd, t0] is(
M(t0)

MN

)k+1

−
(
M(τd)

MN

)k+1

=
CH

1− 3l

{
t0

(
t0
τd

)−3l

− τd

}
, (55)

32



and [t0, t] is (
M(t)

MN

)k+1

−
(
M(t0)

MN

)k+1

=
CH

1 + α− 3l

{
t

(
t

t0

)α( t

τd

)−3l

− t0

(
t0
τd

)−3l
}
, (56)

where

CH = − 3ϵA(1 + k)

4GKtideMN

{
ρ0

(
τd

τKH,0

)3l
}−1 ( a

1AU

)−2
(

t0
1Gyr

)α

. (57)

We sum up (54), (55) and (56) and then we can find(
M(t)

MN

)k+1

−
(
M(0)

MN

)k+1

= CHDH , (58)

where

DH =
1

1− 3l

{
t0

(
t0
τd

)−3l

− τd

}

+
1

1 + α− 3l

{
t

(
t

t0

)α( t

τd

)−3l

− t0

(
t0
τd

)−3l
}

(59)

In fact, ρ0(τd/τKH,0)
3l in (57) is the planet’s mean density when the disk has been

disappeared. If the planet’s formation follows the ”hot start” scenario, the disk
depletion time scale limits the planet’s mass loss.

A.2 The cold start planet

In the case of the cold start planet, we integrate Ṁ by four periods for [0, τd], [τd, τKH,0], [τKH,0, t0]
and [t0, t]. Therefore we can find that [0, τd] is

M(τd)−M(0) = 0 (60)

and [τd, τKH,0] is(
M(τKH,0)

MN

)k+1

−
(
M(τd)

MN

)k+1

= CC (τKH,0 − τd) (61)
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and [τKH,0, t0] is(
M(t0)

MN

)k+1

−
(
M(τKH,0)

MN

)k+1

=
CC

1− 3l

{
t0

(
t0

τKH,0

)−3l

− τKH,0

}
, (62)

and [t0, t] is (
M(t)

MN

)k+1

−
(
M(t0)

MN

)k+1

=
CC

1 + α− 3l

{
t

(
t

t0

)α( t

τKH,0

)−3l

− t0

(
t0

τKH,0

)−3l
}
, (63)

where

CC = − 3ϵA(1 + k)

4GKtideMN

1

ρ0

( a

1AU

)−2
(

t0
1Gyr

)α

. (64)

We sum up (60), (61), (62) and (63) and then we can find(
M(t)

MN

)k+1

−
(
M(0)

MN

)k+1

= CCDC (65)

where

DC = (τKH,0 − τd)

+
1

1− 3l

{
t0

(
t0

τKH,0

)−3l

− τKH,0

}
1

1 + α− 3l

{
t

(
t

t0

)α( t

τKH,0

)−3l

− t0

(
t0

τKH,0

)−3l
}
. (66)

A.3 In the case of the low initial luminosity : τd < t0 <
τKH,0

In the case of τd < t0 < τKH,0, we integrate Ṁ by four periods for [0, τd], [τd, t0], [t0, τKH,0]
and [τKH,0, t]. Therefore we can find that [0, τd] is

M(τd)−M(0) = 0 (67)

and [τd, t0] is (
M(t0)

MN

)k+1

−
(
M(τd)

MN

)k+1

= CL (t0 − τd) (68)
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and [t0, τKH,0] is(
M(τKH,0)

MN

)k+1

−
(
M(t0)

MN

)k+1

=
CL

1 + α

{
τKH,0

(
τKH,0

t0

)α

− t0

}
, (69)

and [τKH,0, t] is (
M(t)

MN

)k+1

−
(
M(τKH,0)

MN

)k+1

=
CL

1 + α− 3l

{
t

(
t

t0

)α( t

τKH,0

)−3l

− τKH,0

(
τKH,0

t0

)α
}
, (70)

where

CL = − 3ϵA(1 + k)

4GKtideMN

1

ρ0

( a

1AU

)−2
(

t0
1Gyr

)α

. (71)

We sum up (67), (68), (69) and (70) and then we can find(
M(t)

MN

)k+1

−
(
M(0)

MN

)k+1

= CLDL (72)

where

DL = (t0 − τd)

+
1

1 + α

{
τKH,0

(
τKH,0

t0

)α

− t0

}
+

1

1 + α− 3l

{
t

(
t

t0

)α( t

τKH,0

)−3l

− τKH,0

(
τKH,0

t0

)α
}

(73)

A.4 Estimate the threshold mass Mthrs

Provided that we use the parameters which we use in this work. In our calculation,
our water-rich planet’s mean density is

ρ̄ = 3× 10−2

(
Mp

MN

)1( t

5× 107years

)0.6

. (74)

when we assume Lp,0 ≈ 1025erg/(s·cm2), a = 0.05AU and Xwr = 3. In the case of
the hot start, we can obtain

CH = −5.2× 10−16

×
( ϵ

0.1

)(
A

29.7erg/(s · cm2)

)(
1 + k

2

)(
Ktide

0.8

)−1

×
(

ρ0
0.01g/cm3

)−1 ( a

0.05AU

)−2
(

t0
0.1Gyr

)−1.23

. (75)
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We set τd = 107years, t0 = 108years and t = 1010years. Then we can obtain

DH = 2.1× 1015. (76)

If M(t = 1010years) = 0 and k = 1, we can obtain the threshold mass

Mthrs = 1.1MN = 18M⊕. (77)

In the case of the cold start, we can obtain

CC = −1.7× 10−16

×
( ϵ

0.1

)(
A

29.7erg/(s · cm2)

)(
1 + k

2

)(
Ktide

0.8

)−1

×
(

ρ0
0.03g/cm3

)−1 ( a

0.05AU

)−2
(

t0
0.1Gyr

)−1.23

. (78)

We set τKH,0 = 5 × 107years, τd = 107years, t0 = 108years and t = 1010years. Then
we can obtain

DC = 5.0× 1015 (79)

If M(t = 1010years) = 0 and k = 1, we can obtain the threshold mass

Mthrs = 0.93MN = 16M⊕. (80)

On the other hand, if we apply the formula derived by Valencia et al. (2010), we can
obtain the threshold mass

Mthrs = 5.3M⊕ (81)

for ρ0 = 0.1g/cm3, which is the water-rich planet’s mean density at t ∼ 109years.
Comparing with our numerical result, our formula is more accurate than the pi-
oneering work. Note that these formula do not apply if the planet’s composition
significantly varies. If the planet’s composition has vary, the planet’s mean density
profile must change. In that case we have to calculate by numerical solution. In fact,
the time evolution of the water to rock ratio Xw/r has large effect on the Mthrs value.
If the rocky component become rich, the planet’s radius tend to shrink. and then
the effect of mass loss becomes small. This effect causes that Mthrs derived by our
analytical formula is larger than Mthrs derived by our numerical study.
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B Analytical formula of the giant impact

We consider the giant impact event as two impactors having a collide each other.
Here we call the higher mass impactor ”1”, the lower mass impactor ”2” and the
planet made by the two impactors’ collision ”3”. mi(i = 1, 2, 3) represent planets’
masses and ri(i = 1, 2, 3) represent planets’ radii. We assume m3 = m1 +m2. The

gravitational energy represent Eg(mi) = −ζiGm2
i /ri. We use vimp ≈

√
v2in + v2esc,

where vin is typically ∼ evKep. And we also use m2/m1 = γm(≤ 1) and r2/r1 = γr.
Then we can derive

Eg(m3) =

[(
1 +

ζ2
ζ1

γ2m
γr

)
− γm

ζ1(1 + γm)

{
1 + γm
1 + γr

+

(
vin
vesc,1

)2
}]

Eg(m1) (82)

where vesc,1 =
√

2Gm1/r1.
ζi is typically ∼ 1. As the planet’s mass become large or cool, ζi become small.

Therefore we can find ζ2 ≥ ζ1 if the planet’s age is the same.
(82) suggests the requirement to be united after the collision. If vin satisfy the

condition;

vin ≥ vesc,1

√(
1 +

1

γm

)(
ζ1 +

γ2m
γr

ζ2 −
γm

1 + γr

)
, (83)

the planet cannot be bound to its gravity because of Eg(m3) ≥ 0. For example, in
the case of m1 = m2, we can derive

Eg(m3 = 2m1) =

[
2− 1

2ζ1

{
1 +

(
vin
vesc,1

)2
}]

Eg(m1). (84)

And we can also estimate the radius r3 after the collision event;

r3
r1

=
8ζ3

4− 1

ζ1

{
1 +

(
vin
vesc,1

)2
} , (85)

where vin requires
vin ≤ vesc,1

√
4ζ1 − 1. (86)
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