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These lectures are primarily intended for 
Those who have never studied inflation
as well as for
Those who have studied inflation 
but are working on bouncing cosmology 
without inflation.



T=2.725K
Cosmic Microwave Background

CMB
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The Einstein equations

'dE Pd dV Q ' 0d Q ' 0d Q TdS
In quasi-static processesComoving entropy is conserved unless some

nonequilibrium processes take place.



Particle Horizon (Physics Horizon)
The maximum length causal interaction can reach by the time t 
= The maximum length light can travel by the time  t .

2 2 2 2( ) 0.ds dt a t d

( )Hd t

1

1

( )

1
1 1

'( ) ( ) ( ) 1 ( )
( ') 1

1 1 ( )

i

i

m

i

m
t m

H t
i

H t t Ht

t t t
m t m

dt t td t a t d a t t a t
a t m t

e e a t
H

( ) 1ma t t m�ZLWK�

䠄Matter or Rad’n era䠅
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䠄Accelerated 
Expansion䠅

( ) Hta t e
䠄Exponential
Expansion䠅

The Classical Big Bang Theory has only this epoch.

Light travels with



Hubble Horizon,  Hubble Radius, Hubble Length

The scale causal interaction is possible within the cosmic expansion time 

One can neglect effects of expansion within this time scale, so one finds
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In the expanding Universe, various events have taken place at different
epochs of the relevant energy scales.  The Hubble radius gives the 
maximum scale that each event can occur coherently. 

Important when particle physics is applied to cosmology.
The term “Horizon” most likely means the Hubble horizon.
The maximum scale we can directly observe at each time.
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In the Classical Big Bang Theory, both the particle horizon and the 
Hubble horizon evolves in proportion to time, namely more rapidly than
the physical length of each coordinate scale 䠄 䠅.
The scales of no previous causal interaction enter the Hubble radius 
continuously and can be seen for the first time.

( )a t

They look all the same!䠙The Horizon Problem
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We must sum up more than 105 causal
patches to make up the current Hubble volume. 



The Horizon problem
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The cosmic microwave background (CMB) has 
the same temperature with 4 digits’ accuracy.
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Particle 
Horizon

The particle horizon is exponentially stretched.
Each coordinate scale crosses the Hubble horizon twice, during and
after inflation.
In between two horizon crossing epochs, that scale is beyond the Hubble
radius and hence invisible.
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The Horizon problem
The Flatness problem
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At the Planck time the curvature radius must have been 
larger than the Hubble radius by more than 1029 times.

The curvature term decreases less 
rapidly than matter or radiation.
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The Horizon Problem
The Flatness Problem
The monopole & other relic Problems
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If one monopole is created per horizon@GUT phase transition,
1

24
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vs current constraint 

Monopoles and other relics /entropy are NOT diluted by inflationary 
expansion but by the subsequent entropy production at the reheating.



The Horizon Problem
The Flatness Problem
The monopole & other relic Problem
The origin-of-fluctuations Problem
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Their seed has also been observed as CMB anisotropy.

Temperature anisotropy at the level of 10-5.

-200                   T(䃛K)                   +200 
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Particle 
Horizon

The particle horizon is exponentially stretched.
Each coordinate scale crosses the Hubble horizon twice, during and
after inflation.
In between two horizon crossing epochs, that scale is beyond the Hubble
radius and hence invisible.
During inflation, superhorizon fluctuations may be generated.



Accelerated Expansion

Followed by Entropy Production

p w
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for

so decreases less rapidly 
than the curvature term.

1 ( ) Htw a t e effconst: 



If there exist a positive effective cosmological constant      (vacuum energy),
then the Universe undergoes an exponential expansion within the Hubble
time determined by the vacuum energy density.

eff

It is easy to make counter examples, so it does not always hold.
Still there are proofs in some limited cases.

Homogeneous but anisotropic space
Bianchi type I䡚VIII (spatially flat or open), inflation occurs with       .
Bianchi type IX (positive curvature), inflation occurs if       .

eff
(3)

eff max
1
2

R

maximum 3-curvature with fixed spatial volume

(Wald 1983)

Inhomogeneous space
eff Inflation occurs if            everywhere. (This condition is too strong.)(3) 0R

Numerical analysis suggests that if there exists        and inhomogeneity
in the corresponding Hubble volume is at most around unity, then
inflation sets in for a wide class of initial conditions.

eff



The initial Hubble patch with radius

Inflate

Reheating

adiabatic 
expansion

This region must be bigger than

the observable region, whose entropy is 

given by                       (2.7K CMB photon & 1.95K neutrinos㽢3 generations
in the Hubble radius                          ).

88
0 2.6 10S

1 3
0 4.2 10 MpcH

1H
expand by                 timesN

f ia a e

dominated by a field w/ EOS P w

RTReheating temperature
The initial Hubble patch has expanded 
to



The initial Hubble patch with radius

Inflate

Reheating

adiabatic 
expansion

1H
expand by                 timesN

f ia a e

dominated by a field w/ EOS P w

RTReheating temperature
The initial Hubble patch has expanded 
to

The entropy contained in this region is
given by



must be larger than                , so the number of e-folds       must satisfy88
0 2.6 10S N

However, the above is merely a condition that the initial Hubble patch should
have expanded larger than the current Hubble patch whose fluctuation is only
at the level of         .510
If the initial Hubble patch had fluctuations of order of unity, then it must expand
by                       times longer than         . 

1
2510 500 minN



So the minimal condition for the number of e-folds reads

for              . 0w

and

for              .  (k-inflation or G-inflation.)1w

(standard inflation)

min minln 500 6.2N N N , namely,



initial value at the onset of inflation

If inflation solves the horizon problem, it predicts 
that our Universe is spatially flat with

5
0 1 10tot

Prediction of Inflation I



Once inflation sets in, the Universe rapidly becomes 
homogeneous & isotropic, and almost spatially flat.
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rapidly decreases

2
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Anisotropic space
3 spatial volume factora

decreases with the same rate
as the spatial curvature
in the expanding phase.

Increases very rapidly
in a contraction phase
Problem for a 
bouncing cosmology

aH
a
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Each coordinate scale crosses the Hubble horizon twice, contraction
and expansion stages.
In between two horizon crossing epochs, that scale is beyond the Hubble
radius and hence invisible.
During bounce, superhorizon fluctuations may be generated.





Energy density of a scalar field
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Inflation with                is 
realized if potential 
energy dominates.
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A.  Canonical Scalar Field
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Einstein equation                  Field equation

If energy density is dominated by the potential, inflation occurs. 
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PlM
e ff

䃥

V[䃥]
slow-roll
large Hubble friction

flat potential

p

Slow-roll equations of motion
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Einstein equation                  Field equation

If energy density is dominated by the potential, inflation occurs. 

䃥

V[䃥]

eff

PlM
e ff

䃥

V[䃥]
slow-roll
large Hubble friction

flat potential

field oscillation around the minimum
䊻particle production䊻reheating

p

But it is not a mandatory requirement…



For                                       ,                     is required.

Energy density of a scalar field
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B.  Non-Canonical Scalar Field (k-inflation)

2 ,    XXK K P K
Inflation is possible if            .
Exponential inflation is realized if          .

XK XK
0XK

X
KK
X

C. with a Higher derivative term (G-inflation)

( , ) ( , ) ...,K X G XL =

(Armendariz-Picon, Damour, & Mukhanov 99)

(Kobayashi, Yamaguchi, & JY 10)
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R2 inflation (still viable)

Old inflation (1st order phase transition)

New inflation (slow-roll model)



(a) T >> v (b) T = 0

Both old and new inflation models were based on the high-temperature
symmetry restoration of grand unified theories in the early universe at
around T = 1015 GeV.

eff



Two body reaction rate with a massless gauge particle

Number of reaction channel

Gauge coupling constant

1
22

4
2

8
3 30PL

H g T
M

g # Relativistic degrees of freedom
must have been larger than

Namely, H
This imposes an upper bound on the radiation temperature,

Thermal phase transition at the GUT scale was impossible.

.

.

Some nonthermal mechanisms to set up the initial condition 
for inflation must be invoked.



(Linde 83)Consider the simplest Lagrangian

䃥

V[䃥]

eff

PlM

With a natural initial condition at the Planck epoch when the Universe
was presumably dominated by large quantum fluctuations:

typical initial field amplitude
2

4
22 PlM

L

typical size of coherent domain

Compton wavelength of the field
“The Universe was smaller than
a particle.”

Horizon@ Plt
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eff

PlM

This is a potential just for simple harmonic
motion with a period                  .
But when              , we find                  
so the dynamics is friction dominated.

2 m
    PlM    H m

Slow-roll equations can be solved as

Quasi-exponential inflation ends at                             when time variation
rate              becomes as large as the cosmic expansion rate .H

After that the Universe is dominated by coherent field oscillation of 䃥.



Number of e-folds
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would be sufficient to solve the horizon problem.
However, it is not trivial to have a flat enough potential for the field
range beyond the Planck scale.
(Example) Supergravity inflation

[ ]i j
i ijK VL

2
i j

i j

KK

2 2
2

3[ ] G

K
M i j

i i j
G

V e D WK D W W
M

2

3i

i G i

W KD W W
M

1
2

i j
i j

KK

2
i i i

i i
K

i j i jK

i j

Kahler potential also generates kinetic term.

For the minimal kinetic term

Exponentially steep
potential beyond      .GM

First successful model in SUGRA (Murayama, Suzuki, Yanagida, JY 93)
Shift symmetry (Kawasaki, Yanagida, Yamaguchi, 00)

Stringy realization: Monodromy model (Silverstein & Westphal 08)



Thickness of the wall is determined by the
balance of                      and
as

(Vilenkin 94, Linde 94)

This model has a domain wall solution.
(Example) xy symmetric solution.

1
v

Comparing it with the Hubble radius corresponding to the energy density

We find                     if               , that is, the domain wall is thicker than
the Hubble horizon.

cV



The coordinate,           , where                             is given by

Since the spatial gradient is small here, one can solve the slow roll eqs
at each point independently assuming                            to yield

Inside the domain wall is dominated by a large potential energy 
of almost homogeneous field in the Hubble scale.
Such a region would inflate without respect to outside the domain wall.

Near the core of the wall, one can expand as                    .

Any point with            will eventually reach                and terminate inflation.0z
Its physical size will be exponentially stretched.



(Linde 94)

Symmetry restoration with another field

䃥

V

eff
eff

: symmetry of 䃦is restored and
false vacuum energy can drive inflation.

: phase transition and inflation ends.

Inflation can occur with field amplitudes much smaller than     .

Fine tuning of initial condition of two fields is necessary.

PlM

(Tetradis 98, Menders & Liddle 00)
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After potential-driven inflation, the scalar
field oscillates around the global minimum.

In some circumstances, e.g., the case
the minimum is at the origin and the 
inflaton is coupled to bosons, explosive
particle production known as preheating
takes place when the field amplitude is large.

The coherent field oscillation is equivalent 
to the zero-mode condensate of the inflaton, 
and it decays with the decay rate of the 
inflaton particle eventually.
The final stage of reheating is governed
by such a perturbative decay.

For example, the Yukawa coupling
gives the decay rate



When               , multiplying                               by      one finds23 0H mH

can be replaced by        due to rapid oscillation.

The energy transfer equations read

The solutions are
time

3a

3
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4a

ft Rt

r

䃠



1
Rt

which is derived from an equality

NB. The reheating temperature is not the maximum temperature after
inflation but the temperature at the onset of radiation domination after
significant entropy production.

time

3a

3
2a

4a

ft Rt

r

䃠

is solved as

in the field oscillation regime.

ft
ft

The temperature decreases as

in the field oscillation regime, if the decay product is rapidly thermalized.
RT

The Universe is dominated by radiation around
with the reheating temperature



For the Yukawa coupling            to a fermion with mass      , 

the pertubative decay rate is

h m
3
22

2 2
1

8 pert

mh m
m

When the amplitude of oscillation is large,                , it is suppressed asamph m
1
2

5 2

4
ln( )

pert

amp amp

m
h h m (Dolgov & Kirilova 90)

If the decay products are thermalized in the perturbative regime, 
the decay rate is modified as

1 2
2pert F

m
n

1 2
2pert B

m
n

or

to fermions

to bosons
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Inflation ends when both coefficients turn to have positive sign.

After inflation the Universe is dominated by the kinetic energy
of    , which now behaves as a free massless field,             

2
6 ( ).

2
a t 1w

Reheating occurs through gravitational particle production due
to the change of the cosmic expansion law:

1
3inf( ) ( ) .H ta t e a t t

(Ford 87)

At the end of inflation, radiation is created with its energy density 
corresponding at least to the Hawking temperature               .inf 2HT H
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at the end of inflation.
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The Universe will eventually be dominated by radiation.
2

7inf0.01 2 10 GeV
0.1R

Pl

H rT
M

: tensor-to-scalar ratior

Massive particles with mass up to        are also copiously produced.infH

Baryogenesis through leptogenesis is possible if the mass of the
lightest right-handed Majorana neutrino is smaller than the 
Hawking temperature.





If we impose the normalization condition                        ,
the canonical commutation relation                        
yields                       ,
where the conjugate momentum is given by                        .

Similar to the behavior of massless scalar field           in de Sitter space
whose square expectation value behaves as                       .

( , )tx

The mode function satisfies 

in de Sitter space and its normalized solution is given by

is the conformal time and                       .

(Bunchi & Davis 78, Vilenkin & Ford 82…)



for

in the superhorizon regime

So we find

and its conjugate momentum reads The same operator
dependence!

When the decaying mode is negligible,          and          have the same
operator dependence and commute with each other.

Long-wave quantum fluctuations behave 
as if classical statistical fluctuations.

Origin of large scale
structures and CMB
anisotropy
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( )dt a d t a
In a short time interval when cosmic expansion
is negligible, we may set                                      .

In the short wave regime well inside the Hubble horizon, k aH

This is the usual positive
frequency mode for the 
Minkowski vacuum with
an unusual normalization

defines the vacuum state with the appropriate Minkowski limit.



for

2

2
H

The power spectrum reads

constant and
proportional to 3k

Multiplying the phase space density, we find

: scale-invariant fluctuation

can be obtained by introducing IR and UV cutoffs as

: summing up superhorizon
components generated 
during inflation

In each Hubble time        , quantum fluctuations with an amplitude

and the initial wavelength              is generated and

stretched by inflation continuously. 

1H

2
H 1H

Brownian motion with step           and interval         
2
H 1H



Using a rescaled field,                  the action is rewritten as

For later convenience, we derive the same result starting from the action 
with the conformal time in the metric                           .

after integration by parts.  So it is of the same form as a free-scalar action 
with a time dependent mass.
In the de Sitter background,                             ,  the mode function      
satisfies

The solution satisfying the normalization condition
as in the Minkowski space is given by

in agreement with the previous calculation.



Incorporate linear perturbation to the FLRW background          .

traceless , 1, 2,3i j

Decompose perturbation variables to spatial scalar, vector, and tensor.
(rotation free mode + divergence free mode)

transverse-traceless mode

& Scalar modes䞉䞉䞉Density/Curvature Fluctuations

Vector modes䞉䞉䞉Decaying modes only

Tensor modes䞉䞉䞉Gravitational Waves

&

In the linear perturbation theory, scalar, vector, and tensor modes are
decoupled from each other.  Each Fourier mode also behaves independently.

2



First consider scalar modes in Fourier space

are scalar harmonics defined by

Here “ ” means                                                   etc.

Each perturbation variable is a quantity in Fourier space, e.g. .

Physical meaning of each perturbation variable.

Fluctuation of the lapse function (Newtonian Potential)

Fluctuation of the shift vector

Fluctuation of the spatial volume

Spatial anisotropy



Here we started from the background FLRW spacetime and then incorporated
perturbations.  But actually the real entity is an inhomogeneous spacetime which may
be decomposed to a background and perturbations around it.  The definition of the
background is not unique.  We have gauge modes corresponding to the freedoms 
associated with the definition of the background.

Background 1
Background 2

actual geometry

To see how the gauge modes appear, we introduce two coordinate systems
corresponding to Background 1 (      ) and 2 (      ) and compare expressions of
perturbation variables at the same coordinate value.

Suppose that two coordinates are related by the following scalar-type transformation.

gradient of a
scalarThen the metrices of the two coordinates are related as

,

( ) ( ) ( )x x x



In terms of perturbation variables we find

We can constitute two functions independent of generators      and      ,
namely, gauge invariant quantities.

curvature perturbation

Japanese
notation

Kodama&Sasaki PTP Suppl 78(1984)1



Gauge-invariant variables can be defined similarly for matter contents, too.
(Example) A scalar field transforms as                      by definition.( ) ( )x x

gauge-invariant scalar field perturbation



In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

Let               , then L is fixed.  Then let              , then T is also fixed.
Longitudinal GaugeLongitudinal Gauge



In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

Let                                 then T is fixed.  

Also let                , then L is fixed, too.

Unitary GaugeUnitary Gauge

: scalar field is homogeneous.



For the moment, we work in the longitudinal gauge

and introduce scalar-type perturbations to the perfect fluid matter.

Since the gauge is already fixed, these variables are also gauge-invariant.

Write down the perturbed Einstein equations

0T
anisotropic stress

Hamiltonian 
constraint

Dynamical eq.



Dynamical equation may be found from        term or from        .

From Hamiltonian and momentum constraints we find

is the comoving density perturbation.

term yields

As a result we find the Poisson equation

䐟

䐠

䐡

䐢

From䐟䐠䐡䐢, we find

continuity eqn.

Euler eqn.

Euler eqn.

Momentum constraint



If there are only adiabatic fluctuations, e.g., single fluctuating component, we find
, since                   holds. Then 

Subtracting each other we find

is conserved outside the Hubble radius
if only adiabatic fluctuations are present.

Comoving curvature perturbation

0

0 for 0k
aH

superhorizon limit

In the case of single scalar-field matter with                        , we find

with

so the conservation of comoving curvature perturbation also holds.

This gives the sound velocity of a scalar field.
It is unity for canonical fields.



Using the momentum constraint we can express       with       only.

Bardeen’s 䃕

can be solved as a first-order differential equation

The solution is given by

namely,

Growing adiabatic mode

Decaying adiabatic mode

When                             we find
2 1

13 3
3

15

 for 
 for 0 

C w
C w

In a contracting phase the “Decaying mode” grows severely.





Incorporate curvature perturbation to FLRW Universe and calculate 
its action in the Einstein+scalar model.

include both potential-driven and
k-inflation models

Background equations

with

sound speed of perturbation

We adopt 3+1 ADM decomposition which is useful to separate constraint equations.

represents comoving curvature perturbation conserved outside the horizon.

No gauge mode in L, since we have                                .

Setting                                       gauge in T is also fixed.



The action then reads

where Total derivative terms
not affecting field eqs

We set                                                 to analyze linear scalar perturbations.
perturbation variables

The Hamiltonian constraint obtained by differentiation w.r.t.  N reads



The momentum constraint obtained by differentiation w.r.t.        readsiN

Now that both 䃐 and 䃧 have been expressed by        , we can obtain
the second order action for        as

22 ,H

s

aaz
H c

Introducing new variables,                             and      ,
the action is expressed with the conformal time 䃖 as

which is equivalent to an action of a free scalar field with a time-dependent

mass squared



small slow-variation parameters

Using the de Sitter scale factor             , the normalized mode function reads1a
H

It behaves similarly to a massless scalar field in de Sitter background, 
so that long-wave nearly scale-invariant fluctuations will be generated.

evaluated at the sound
horizon crossing 1skc



The spectral index of the curvature perturbation is given by

In the canonical slow-roll inflation, using the slow-roll equations we find

so

222 2

2 2 2

3
2 2

G
H V

G

MH V
H M H V V

2 4H V V
2

V G
VM
V

3H V

1 6 2s V Vn

The scale dependence of the spectral index, “Running”

216 24 2
ln

s
V V V V

dn
d k

4
2V G

V VM
V

These are important observable quantities!



We derive a second-order action for the tensor perturbation        .
It is wise to make use of the known results on GW in the Minkowski space.
So we first study perturbation around       taking metric as    . 

Taking the TT gauge                                             ,
the Ricci scalar reads up to the second order

The transformation from                        
to                                                              can be done
by the conformal transformation                        .

The Ricci tensors in two conformal metrices are related as



Putting                     , the Ricci scalar reads up to the second order 

Since we are interested in tensor perturbations in the inflaitonary Universe
let us introduce a cosmological constant to drive inflation, to consider

2nd order
using the background
eq.

Introducing new variables
the action reads

which is equivalent to the action of a massless scalar field.

In the de Sitter background                          , we find

as before.
3 2



Introducing new variables
the action reads

which is equivalent to the action of a massless scalar field.

In the de Sitter background                          , we find

as before.
3 2

0HIn case                , we can express 

is the polarization tensor with 

The power spectrum reads

2 2
G TM z



The tensor-to-scalar ratio

Tensor spectral index

consistency relation



It can occur only if previous inflation with a slightly higher 
energy scale is realized with a sufficiently low reheat temperature,
very contrived. (Kamada & JY  09)

DBI inflation induced by moving branes in the warped extra dimension
(Silverstein & Tong 04)

very small r But long enough inflation itself is hardly possible.
(Kobayashi, Mukohyama & Kinoshita 07)

Racetrack inflation

Axionic valley inflation or N-flation

MSSM inflation
The inflaton can be identified in MSSM w/ fine-tuned parameters.

Higgsflation

Chaotic inflation in supergravity with shift symmetry
(Kawasaki, Yamaguchi & Yanagida 00)

r 䠙0.15 allows large variation of 䃥 thanks to the shift symmetry

r 䠙0.003 detectable tensor perturbation even if variation in 䃥 is small

first realization of natural inflation in supergravity

(Allahverdi, Enqvist, Garcia-Bellido & Mazumdar 06)

r 䡚10-25

inflation driven by a Kahler modulus w/ fine tuning of parameters
(Blanco-Pillado, Burgess, Cline, Escoda, Gomez-Reino, Kallosh, Linde &Quevedo 04)

KKLMMT model

(Kaloper, Sorbo & JY 08)

(Kallosh 07)

r 䡚0.01

r 䡚10-8

(Kachuru, Kallosh, Linde, Maldacena, McAllister & Trivedi 03)Newer models of “stringy” inflation
Monodoromy model

Fibre inflation

Warped Wilsonline DBI inflation            

etc

r 䠙0.03

r 䠙0.005

r 䡚0.1

(Silverstein & Westphal 08)

(Cicoli, Burgers, & Quevedo 08)

(Avgoustidis & Zavala  08)



Low frequency components may be observed by 
B-mode polarization of CMB anisotropy

• Polarization is generated by quadrupole temperature anisotropy.
• E-mode from both scalar (density) and tensor perturbations.
• B-mode only from tensor perturbations.

E mode

B mode

PLANCK 䡎 䡚0.1 QUIET+PolarBear 䡎 䡚0.01
EPIC        䡎 䡚0.001 LiteBIRD 䡎 䡚0.001
CMB-POL   䡎 䡚0.001

Planned or ongoing experiments and their expected sensitivity

WMAP7       䡎 <0.25
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Just one summary plot !

(LiteBIRD)
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6 parameter fit
of flat 䂻CDM model



Inflation (adiabatic)

causal seed 
model
(cosmic strings
textures etc) Isocurvature model

WMAP observed negative correlation between temperature anisotropy
and E-mode polarization which is predicted by super-Hubble adiabatic
fluctuations produced during inflation.



6 parameter fit
of flat 䂻CDM model
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(Dodelson, Kinney, Kolb 97)



may also help distinguish models.

Potential-driven slow-roll models
NonGaussianity is small, because the inflaton is very weakly coupled 
with other fields as we have seen.

k-inflation, G-inflation,…
NonGaussianity can be large.

Beyond the single-field inflation



6 parameter fit
of flat 䂻CDM model



30 400kd 35 405kd

In fact, if we change the wavenumber domain of decomposition slightly, 
we obtain a dip rather than an excess even for the band power analysis.

3.3 peak

3 dip



3 ( )k P k

40

Deviation around kd 䍜䉭䍜40
can be seen even in the
binned C 䉭 but those at
125 can not be seen there.

(Nagata & JY 08)



Assume various shapes of modified power spectrum
with three additional parameters in addition to the standard
power-law.

Perform Markov-Chain Monte Carlo analysis with CosmoMC
with these three additional parameters in addition to the standard
6 parameter 䂻CDM model.

( )P k



Transfer function shows that       depends on           with    . 

2( )
2 1

X k

C ( )P k kd

If we add some extra power on          
at                , it would modify
all       ’s with                      .C 125kd

( )P k
125kd

kd

3 ( )k P k

Simply adding an extra power 
around                does not
much improve the likelihood, 
because it modifies the 
successful fit of power-law 
model at smaller     ’s.

125kd



Consider power spectra which change      ’s only locally.C

kd

3( ) ( )A k k P k

v^ type

W type

S type

Height, location, & width of the peak
are 3 additional parameters.
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improves as much as 22 by introducing 3 additional parameters.
2
eff

If 䃦2 improves by 2 or more, it is worth introducing a new 
parameter,  according to Akaike’s information criteria (AIC).

(Ichiki, Nagata, JY, 08)



Unlike our reconstruction methods, MCMC calculations use
not only TT data but also TE data.

2
eff due to improvement of TT fit =

due to improvement of TE fit =2
eff

It is intriguing that our modified spectra improve TE fit significantly 
even if we only used TT data in the beginning. 

12.5
8.5

TT(temp-temp) data and model               TE(temp-Epol) data and model



Posterior probability to find vanishingly small deviation from a power-law.

based on a local analysis in the range                .20kd

Posterior probability to find vanishingly small deviation from a power-law
at any observed wavenumber domain.

based on a global analysis in the range                        .40 380kd

This may or may not be so by chance.
In either case, however,…



Maximum of the difference from the power law

Expected
Errors by
PLANCK

The presence of such a fine structure changes the estimate of
other cosmological parameters at an appreciable level by Planck.



f

k-inflation & G inflation

710 GeV RT

Standard inflation

Its spectrum can be used to probe post-inflationary thermal history 
of the early Universe.

1w

0w

between inflation
and reheating

between inflation
and reheating

sensitivity curves of DECIGO



The precision cosmology is entering a new era with even higher
precision.

Hopefully we will be able to know which if any is the correct
inflation model that occurred at the birth of our Universe.




