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Introduction to

[nflationary Cosmology

These lectures are primarily intended for

Those who have never studied inflation
as well as for

Those who have studied inflation

but are working on bouncing cosmology
without inflation.



Full sky map of microwave background radiation #1

1=2.725K
Cosmic Microwave Background

CMB




The Universe is globally isotropic and homogeneous
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Energy momentum tensor: Perfect Fluid

T = Tg“‘/ +(,?+P)u“uv u =(y,yv/a)

Pressure  Energy density

Conservation y p ;
a dp
T8 =0 => — a =—P s, —4+3H(p+P)=0
v ou &’ dt  —  di (p+£)
g Y,
'
dE = —-PdV =

Comoving entropy is conserved unless some In quasi-static processes
nonequilibrium processes take place.

The Einstein equations
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The Particle Horizon and The Hubble Horizon

Y Particle Horizon (Physics Horizon) d,,(?)

The maximum length causal interaction can reach by the time ¢
= The maximum length light can travel by the time .
Light travels with ds* = —d¢* + a*(t)d y*> = 0.

e

4 a(t)oct™ with m<1

l-m (Matter or Rad’'n era)

Rall

.

|-

a(t)oct™ with m>1
(Accelerated
Expansion)

(eH(H") —1) ~e" oca(t) a(t)oce™
(Exponential
Expansion)

~ 1" o alf)

The Classical Big Bang Theory has only this epoch.




Y& Hubble Horizon, Hubble Radius, Hubble Length

® The scale causal interaction is possible within the cosmic expansion time H

® One can neglect effects of expansion within this time scale, so one finds
(¢

— a(t) oc t”

m

cH'=H "=

Ht

H! a(t) ce

@® |[n the expanding Universe, various events have taken place at different
epochs of the relevant energy scales. The Hubble radius gives the
maximum scale that each event can occur coherently.

Important when particle physics is applied to cosmology.
The term “Horizon” most likely means the Hubble horizon.
The maximum scale we can directly observe at each time.



Evolution of scales in the Glassical Big Bang Theory

scale

Particle Horizon d,, ()

Physical lengtt
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® |n the Classical Big Bang Theory, both the particle horizon and the
Hubble horizon evolves in proportion to time, namely more rapidly than
the physical length of each coordinate scale (o« a(?)).

® The scales of no previous causal interaction enter the Hubble radius
continuously and can be seen for the first time.

b They look all the same!=The Horizon Problem




The Universe at the Decoupling Epoch

The Hubble Radius Then
~1 angular degree

We must sum up more than 10° causal
patches to make up the current Hubble volume.

The Horizon Problem




Alin the early
{/1V Universe

The Horizon problem



The Universe observed by COBE

Comoving Horizon scale
at CMB decoupling

The cosmic microwave background (CMB) has
the same temperature with 4 digits’ accuracy.




Evolution of scales in the Inflationary Cosmology

comoving wavenumber

a(t}ID: a(t)zé/

comoving (coordinate)
length

scale
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» The particle horizon is exponentially stretched.
* Each coordinate scale crosses the Hubble horizon twice, during and

after inflation.

* |n between two horizon crossing epochs, that scale is beyond the Hubble

radius and hence invisible.



solves...

The Horizon problem
The Flatness problem



K » 0,1 (a)Y (HWDY (T (4)
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® At the Planck time the curvature radius must have been
larger than the Hubble radius by more than 102° times.
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The Horizon Problem
The Flathess Problem
The monopole & other relic Problems

If one monopole is created per horizon@GUT phase transition,

n M _ M , -l
M ~10 ~107"° — vs current constraint " . 1924 M
s M, 10°GeV s 10°GeV

Monopoles and other relics /entropy are NOT diluted by inflationary
expansion but by the subsequent entropy production at the reheating.



solves...

The Horizon Problem

The Flatness Problem

The monopole & other relic Problem
The origin-of-fluctuations Problem




Our Universe has hierarchical structures.
SRIAE




Their seed has also been observed as CMB anisotropy.

-200 T(uK) +200

Temperature anisotropy at the level of 10-°.



Evolution of scales in the Inflationary Cosmology

scale

Particle
Horizon
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» The particle horizon is exponentially stretched.
* Each coordinate scale crosses the Hubble horizon twice, during and

after inflation.

* |n between two horizon crossing epochs, that scale is beyond the Hubble

radius and hence invisible.

* During inflation, superhorizon fluctuations may be generated.



Inlation solves all these problems by
o Accelerated Expansion

SO (W<—=|  poc g 20+ decreases less rapidly
than the curvature term.

w=—-1=a(t)ce” p=const: Ay

* Followed by Entropy Production

Rahmai‘mq %
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[s inflation natural? Yes, if not always.
Cosmic No Hair Conjecture

If there exist a positive effective cosmological constant 4 (vacuum energy),
then the Universe undergoes an exponential expansion within the Hubble
time determined by the vacuum energy density.

It is easy to make counter examples, so it does not always hold.
Still there are proofs in some limited cases.

Homogeneous but anisotropic space

Bianchi type |~ VIII (spatially flat or open), inflation occurs with A, .

Bianchi type IX (positive curvature), inflation occurs if 4, >%R<3;X.

maximum 3-curvature with fixed spatial volume
Inhomogeneous space

34 Inflation occurs if R® <0 everywhere. (This condition is too strong.)

Numerical analysis suggests that if there exists A and inhomogeneity
in the corresponding Hubble volume is at most around unity, then
inflation sets in for a wide class of initial conditions.



How much inflation is required to solve
the horizon and the flatness problems?

The initial Hubble patch with radius H

expand by a, /a, =e" times
dominated by a field w/ EOS P =wp

—

adiabatic
expansion

This region must be bigger than

the observable region, whose entropy is

given by S, =2.6x10" (2.7K CMB photon & 1.95K neutrinos X 3 generations
in the Hubble radius H;'=4.2x10’Mpc ).



How much inflation is required to solve
the horizon and the flatness problems?

The initial Hubble patch with radius H

expand by a, /a, =e" times
dominated by a field w/ EOS P =wp

—

adiabatic
expansion

The entropy contained in this region is
given by

1673 ( 45 )
270 \ 473
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must be larger than S, =2.6x10%, so the number of e-folds N must satisfy

12.9— 10.8i0 w 0+
In (

N > 67.7 ) L 1+ 3w 1 ( r )
F i ———————————— — —In ( —
14w 3 + 3w 106.75 6(1 + w) 0.01

1 — Zap 1 )L =
+ = In ( 5 ) = Nmim r=0.01 (—)

3+ 3w 103GeV 2.4 x 1013GeV
However, the above is merely a condition that the initial Hubble patch should
have expanded larger than the current Hubble patch whose fluctuation is only

at the level of 10

If the initial Hubble patch had fluctuations of order of unity, then it must expand
by (107)° ~500 times longer than N, .



So the minimal condition for the number of e-folds reads
N>N_._ +In500=N_. +6.2, namely,

1 ro 1 Tr
N > 55+ —1In ( ) + —In (—1) for w=20.
() 0.01 3 10°GeV (standard inflation)

and

1 g. \ 1 roy 1 Ir
T\f>('”—_-1( )+71-(__ )_71' (—)
ST 10675/ T3 N0/ T 3 \108GeV

for w=1. (k-inflation or G-inflation.)




Flatness of the Universe

—2AN—-—Nnpin) - enn—2 1 1n—06
—e - min) ~ 500" = 4 x 10
ag H 0 )

initial value at the onset of inflation

— Prediction of Inflation |

If inflation solves the horizon problem, it predicts
that our Universe is spatially flat with

Q,,,-1<107

ot(




Once inflation sets in, the Universe rapidly becomes
homogeneous & isotropic, and almost spatially flat.

rapidly decreases

Anisotropic space

a= i/ spatial volume factor

H =

STRRSIE

decreases with the same rate
as the spatial curvature
In the expanding phase.

Increases very rapidly
In a contraction phase
Problem for a
bouncing cosmology



Evolution of scales in thtbdniximeang Cosmology

scale
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*» Each coordinate scale crosses the Hubble horizon twice, contraction
and expansion stages.

» |n between two horizon crossing epochs, that scale is beyond the Hubble
radius and hence invisible.

» During bounce, superhorizon fluctuations may be generated.






What drives INFLATION?

Energy density of a scalar field
® A. Canonical Scalar Field

S=[r-gd'x=||-1¢"0,40,0-VIg] |J-gd'x

2 oS
T (x)=— =0 —| —12%p -V
R s | —1870,00,6-VI4lg,,

p=1¢’+VIgl. P=14"-VI4]

Inflation with w=P/p=-1is |
realized if potential
energy dominates.




Inflation driven by a canonical scalar field

|

L=--g,0,00,¢-

2

Einstein equation
K 8EG(

H* +—

2
a

¢ +V[¢]j

Vig]

. p:%ww[m, P=%¢2—V[¢]

Field equation

d+3HP+V'[p]=0

P==—P

If energy density is dominated by the potential, inflation occurs.

Vi
A

S

Slow-roll equations of motion

_SEG(
3

H2

D]

slow-roll

large Hubble friction

|

Lmﬁ

M

Pl

+ V[¢]j

> ¢

o]

flat

-

potential

3Hp+V'p]=0



Inflation driven by a canonical scalar field

1 1 1o
Lz—EgﬂV6ﬂ¢8v¢—V[¢] - p=5¢ +V[g], P=5¢ - Vgl
Einstein equation Field equation

, K 8zG(1 . . p=—p
H +?_T(5¢ +V[¢]j d+3Hp+V'[4]=0

If energy density is dominated by the potential, inflation occurs.

Vo] slow-roll . V,: ]
A large Hubble friction _
[ flat [potential
- | !
& IAeﬁ”> ¢
M > @

Pl
field oscillation around the minimumJ
—particle production—reheating

But it is not a mandatory requirement...



What drives INFLATION?

Energy density of a scalar field
@ B. Non-Canonical Scalar Field (k-inflation)

S =|ry-gd'x=[K(X,p)\J-gd'x, X=-1g"0,404
r,(x)=Kg, —Ky(-0,90,¢)=Pg,  +(p+Pu,u,

oK

p=2XK, —-K, P=K k=X

Inflation is possible if K < XK,.
Exponential inflation is realized if K, =0.

For K(X,9)=K, ()X +K,(#)X, K (PK,($)<0is required.

e C. with a Higher derivative term (G-inflation)

L,=K(¢,X)-GC(9,X)Dg...,



The original references to Inflation

Scientific Background on the Nobel Prize in Physics 2011

THE ACCELERATING UNIVERSE

compiled by the Class for Physics of the Royal Swedish Academy of Sciences

In order to explain how the Universe can be so homogeneous with different
parts that seemingly cannot have been 1n causal contact with_each other, the 1dea of an
inflationary phase in the early Universe was put forwar(




Old inflation (15t order phase transition)

R? inflation (still viable)

[30] A./Statobinsky, “A new type of i1sotropic cosmological models without
singularity’’ Phys. Lett., B91, 99-102, (1980);

K. Sato, /First order phase transition of a vacuum and expansion of the Universe”,
MNRAS), 195, 467-479, (1981);

A.H. Guth, “The inflationary universe: A possible solution to the horizon and flatness
problems”, Phys. Rev., D23, 347-356, (1980);

A.D. Linde, “A new inflationary scenario: A possible solution to the horizon, flatness,
homogeneity, 1sotropy and primordial monopole problems”, Phys. Lett., B108, 389-393,
(1981);

A. Albrecht and P.J. Stemnhardt, “Cosmology for Grand Unified Theories with
radiatively induced syrhmetry breaking”, Phys. Rev. Lett., 48, 1220-1223, (1982),

New inflation (slow-roll model)



Both old and new inflation models were based on the high-temperature
symmetry restoration of grand unified theories in the early universe at
around 7= 10" GeV.

e . V@) &

(@) T>>v (b) T=0



Was the early Universe in a thermal equiliorum state?
Two bodv reaction rate with a massless gauge particle

ATT3 A2
Iy = (noc) ~ NI~ a N Number of reaction channel

g2 T2

must have been larger than

& Gauge coupling constant

g. # Relativistic degrees of freedom

2 2
H = 872 i g*T4 _
3M;, 30

Namely, 7> H

This imposes an upper bound on the radiation temperature,

' 2 ..?\T Q‘ _1;"2
T 1015( a ) (—) ( ) ) GeV = T.
< 005/ \10/ \200 © d

Thermal phase transition at the GUT scale was impossible.

Some nonthermal mechanisms to set up the initial condition
for inflation must be invoked.



Example 1: Large-field model, Chaotic Inflation

* Consider the simplest Lagrangian (Linde 83)

1 , 1 5 .
Ly=—5(00) = Vg, Vigl=gm?s*, m < Mp
*  With a natural initial condition at the Planck epoch when the Universe
was presumably dominated by large quantum fluctuations:

1, . L o
—5(3@2 < Mpy, ;m'ngz S Mpy,
¢ !
TT<M} ¢ ~ Mz, /m > Mp,

L N> Mp,' Horizon@ )

Compton wavelength of the field
“The Universe was smaller than
a particle.”




w This is a potential just for simple harmonic
motion with a period 7 =27z/m
Butwhen ¢>am,, , we find H> m
so the dynamics is friction dominated.

b+ 3Ho+V'[¢] =0,

2

a ‘ TP Pé 1 ..
—_ — HZ — ‘f = — _ — 2 . .
(a) 303, 3MZ PeT R0 viel Mg = Mpy/V8m
* Slow-roll equations can be solved as
3Ho+V'[¢] =0, o) = o= TP,
. 9 | 2/ 3
(a) _ g2 87V (] 1 o
) T oang2 a(t) = a;exp - Oi(t —t;) — ﬂ(?f —1;)*
a SMp, e 6

* Quasi- exoonential inflation ends at ¢ = Mp;/+/4m when time variation
rate \gf)/gf)\ becomes as large as the cosmic expansion rate H .

% After that the Universe is dominated by coherent field oscillation of ¢ .



% Number of e-folds
27 (o M,
a(t)=a, eXp{ME (47 -4 (f))} e (4’51 - 4ﬁj

¢; = 3Mp; would be sufficient to solve the horizon problem.
% However, it is not trivial to have a flat enough potential for the field
range beyond the Planck scale.
(Example) Supergravity inflation D = ow 3 oK w

o0g, M2 o0g,
Vig.]= '@ DiWKi7D7 * 32 2} K7 = oK =0y
M 0g,0p-

Kahler potential also generates kinetic term.

£=-K70408  -V[$] 7= K
904 -VI[g] « T

For the minimal kinetic term K/ = 5"/
Exponentially steep

K=) ¢¢ =
Z potential beyond M,
First successful model in SUGRA (Murayama, Suzuki, Yanaglda JY 93)
Shift symmetry (Kawasaki, Yanagida, Yamaguchi, 00)

% Stringy realization: Monodromy model  (Silverstein & Westphal 08)




Example 2: Small-field ml@d@\l,, T)p)@\l(@gucal Inflation
(Vilenkin 94, Linde 94)

L= (007~ Vo], VIg]= (6"~ /()

(b)

% This model has a domain wall solution.
(Example) xy symmetric solution.

o(0) = vtonn (3oz) \ /]’\ J

% Thickness of the wall is determined by the

balance of V' [0] = V. and (9¢)2 ~ (d
as 1 ’ '
d ~ UV_1/2
0 T

% Comparing it with the Hubble radius corresponding to the energy density V..

H-l = (87;(;"/6)—1/2 — My, (8;3‘/0)1/2

% Wefind dyg > H! ifv 2 Mpy, that is, the domain wall is thicker than
the Hubble horizon.



* Inside the domain wall is dominated by a large potential energy V' ~ V..
of almost homogeneous field in the Hubble scale.

% Such a region would inflate without respect to outside the domain wall.

% Near the core of the wall, one can expand as ¢(x,t.) ~ kz .

* Since the spatial gradient is small here, one can solve the slow roll eqgs
at each point independently assuming 12 = \v? < H? to yield
o(x,t) = o(x,t )exp[ - (t—t )} = k’.zexp[ - (t—t )}
] ? ] s VC SHC C C

3H,
a(t) ~ acexp|[H:(t —t.)]

* The coordinate, z, (t) , where ¢ == ¢, (< v) is given by
_ 2
(1) = K 6w exp [~ (1= )] N

Any point with z = 0 will eventually reach |¢| > ¢. and terminate inflation.

* |ts physical size will be exponentially stretched.

d(t) = alt)z (1) = ack™ 6w exp [ (He = £ ) (¢ = 10)




Bxarmple 3: Yacuum dominated model, Hybrid Inflation

| | | (Linde 94)
L = —(8)()'(8)() — 5(8¢)2 T V[Xa (;b}a

v
* Symmetry restoration with another field t )//

A o o , 1, -
V.0l = S(x* = 0% + g0’ x]* + 5m’0? \/\7

‘ ‘ AR
* g%¢p? > \v? :symmetry of x is restored and 4

false vacuum energy can drive inflation.

re
A 1 5 .
Vix =0,0] = S04+ -m*¢ 02V
: 2 9 — N2 — \(f 2 2 2,2
5o = ML= ACIKE =) + g%
VN
* < p - . phase transition and inflation ends.

%* Inflation can occur with field amplitudes much smaller than M, .

% Fine tuning of initial condition of two fields is necessary.
(Tetradis 98, Menders & Liddle 00)



After Inflation: Coherent Field Oscillation

% After potential-driven inflation, the scalar
field oscillates around the global minimum.

* In some circumstances, e.g., the case
the minimum is at the origin and the
inflaton is coupled to bosons, explosive
particle production known as preheating
takes place when the field amplitude is large. V(@)

% The coherent field oscillation is equivalent
to the zero-mode condensate of the inflaton,
and it decays with the decay rate of the
inflaton particle eventually. \
The final stage of reheating is governed /
by such a perturbative decay. \ A

% For example, the Yukawa coupling hgf)@[‘}gﬁ;
gives the decay rate }2 -

ly=—m
Y 8w



% When H > I, , multiplying ¢ +3H¢$+m’¢=0by ¢ one finds

d 1., 1 4 2) 12
— = = = —3H
7 (59" +5m'o ?
§/)2 can be replaced by gb2 due to rapid oscillation.
2 /

Po = ¢

% The energy transfer equations read

dpqs
= —(3H +1,)p,
o (BH + I'y)pe

\ O

dpy
dt

—4H,Or —+ Fgg)pqs

% The solutions are

} exp[—L(t —1f)]  pe(t) =T _/: [—)} po(T)dT

a(t)

a(ty)

pe(t) = pe(ty) [



% The Universe is dominated by radiation around # ~7,’
with the reheating temperature

200 1/4 L 2008V, YR
T :0.1( ) I F)§10“( ) ( : ) eV
R 0 Pl 7 105GeV ©
1/2 2 A :
which is derived from an equality i — ( 87T pr) / _ ( 87T TG+ Tﬁ) ~ 1 o~ £F¢
3NM2, 3MZ, 30 2 2

% NB. The reheating temperature is not the maximum temperature after
inflation but the temperature at the onset of radiation domination after

significant entropy production. A D
B tra(t)1*
pe(t) =1, _/tf [&(7)} po(T)dT

is solved as

p (1) = %FN[ )

al(t)

—3 6
} Pd)(’f) = §F¢HM%,

in the field oscillation regime.

% The temperature decreases as

T = 36 ", HM? e
B (772g=1= ¢ G> \ Ty

in the field oscillation regime, if the decay product is rapidly thermalized.

’ I time




* For the Yukawa coupling #¢yy to a fermion with mass m,,

I'y=—m

=]
’ 8r

dpert

the pertubative decay rate is 2 [ ( - }T
1_ |4
¢

m,

* When the amplitude of oscillation is large, &g, >m, , itis suppressed as

1
j—v 4F¢pert m¢ 2
= Dol Kiril
¢ 22 | ¢amp In(/ ¢amp /m¢) (Dolgov & Kirilova 90)

* |f the decay products are thermalized in the perturbative regime,
the decay rate is modified as

m
I,=r,,, {1—2% [;H to fermions
or

m
r,=r,,, {1 +2n, L;ﬂ to bosons



After k-Inflation and G Inflation

ex K(X,9)=K ()X +K,($)X

» Inflation ends when both coefficients turn to have positive sign.

» After inflation the Universe is dominated by the kinetic energy
of @ , which now behaves as a free massless field,

72

p:%oca_6(t), w=1

» Reheating occurs through gravitational particle productlon due
to the change of the cosmic expansion law: a(t) < e — a(z) oc 13,

At the end of inflation, radiation is created with its energy density
corresponding at least to the Hawking temperature 7, =H,,/2x.



After k-Inflation and G Inflation

y) H. 2
rras- H.
Pr 3 (2 ) ~(M—nfj < 1at the end of inflation.

Pl

* The Universe will eventually be dominated by radiation.

2
Py =2x107(
Mp,

r

T ~0.01
: 0.1

jGeV I’ : tensor-to-scalar ratio

» Massive particles with mass up to ~ A, . are also copiously produced.

Baryogenesis through leptogenesis is possible if the mass of the
lightest right-handed Majorana neutrino is smaller than the
Hawking temperature.






Quantum properties of the inflaton

% Similar to the behavior of massless scalar fieldo(x.?) in de Sittger space
H

whose square expectation value behaves as (¢(z,t)?) = (;) Ht
(Bunchi & Davis 78, Vilenkin & Ford 82...)
S Y -
(t)e

" e ke . ot s ik
pla,t) = )2 (appr(t)e™ ™ + apor(t)e )= 2m)32 Tk L

% If we impose the normalization condition ¢« (t)#5(t) — ¢n(t)ei(t) =
the canonical commutation relation [p(z,t), 7(2’,t)] = id(x — =’)
yields [ay,. éi}c,] — 6C)(k — k)
where the conjugate momentum is given by 7(z,t) = a*(t)¢(x, ) .

2
% The mode function satisfies [ 4" 4 RH% iﬂt] or(t) =0

de?
in de Sitter space and its normalized solution is given by

0 1H :
t) = \/=H(—n)**H},,(—kn) = 1+ ikn)e """
&9&( A ?? gfg( ??) m( T+ U)F

a3(t) ’

t 1 k
= _— p— I I —k' —
n / O th ~om 1S the conformal time and —#7 Halt) -



ZH (l 4 1[[ ) —ikn EH (l Z:Zz ) ?‘HL
(D1, — G - — _— —— e r
* Pk NOJE LvRIe /)3 Ha
o ( ; )2 for k< a(t)H
¢1.(t) = —¢r(t) in the superhorizon regime

So we find @p. (1) = wr(t)(ag — CALT_k)\

~ The same operator

and its conjugate momentum reads
dependence!

o~ i

() = a(t)’¢r(t)(ag —a’ 1) —

* When the decaying mode is negligible, ¢ and 7 have the same
operator dependence and commute with each other.

Long-wave quantum fluctuations behave - Origin of large scale

as if classical statistical fluctuations structures and CMB
: anisotropy




X |n the short wave regime well inside the Hubble horizon, k > aH

- ~~
Lo R ./ J R S S (R

e = 5% "ok a\/_ JEE /2k/a 3/2 2kphys
In a short time interval when cosmic expan3|on
is negligible, we may set dt =a(n)dn——>t=an

This is the usual positive
frequency mode for the
Minkowski vacuum with
an unusual normalization

pr(t)Pr(t) — Pr(t)er(t) = a3(t)

\/7H _?? 3 ZHgQ( ;‘??)

defines the vacuum state with the appropriate Minkowski limit.



% The power spectrum reads

0 =1 ety - I kg constant and
283 2k3 Half(t) proportional to k3

* Multiplying the phase space density, we find

'—]:.fl.k H ?
| 2 . . .
|'~Pﬁ:( )| (27)3 dlnk = (27[) . scale-invariant fluctuation

)
(p(x,1)?) = (E) Ht can be obtained by introducing IR and UV cutoffs as

Heft , d3k H 2 . summing up superhorizon
fH or ()] 2r)3 (g) Ht  components generated
during inflation

~ . : . H :
~ Brownian motion with step iz— and interval g
T

In each Hubble time H ', quantum fluctuations with an amplitude

0P = +2£ and the initial wavelength 1 ~ H'is generated and
7T

stretched by inflation continuously.




% For later convenience, we derive the same result starting from the action
with the conformal time in the metric ds? = a?(n)(—dn? + dz?).

S = /\/—gd4$ [—%g”“ﬁqu)ﬁugf) — %m%f)ﬂ = é /dfrydgzz:{a2 (0% — (V$)*] — a*m?¢*}
% Using a rescaled field, X = a¢ the action is rewritten as
S = L dnd>z { 2 (Vx)? — (a2m2 — a_”) 2} v =
2, X X a )X on

after integration by parts. So it is of the same form as a free-scalar action
with a time dependent mass.

%* In the de Sitter background, a(n) = —1/(Hn), the mode function Xk
satisfies 9

/

* The solution satisfying the normalization condition y'x* — xx* =1
as in the Minkowski space is given by

m™N\L/2 ©r (T
Xk(n) = (_T) Héj?z(—k‘-n) = ng))

in agreement with the previous calculation.



Cosmological perturbation theory

* Incorporate linear perturbation to the FLRW background ds* = —dt* + a(t)*dz?,

ds® = —(1 +2A)dt* — 2aB;dtda? + a*(6;; + 2H6;; + 2Hp,; )dz'dz?
traceless  i,j=1,2,3
% Decompose perturbation variables to spatial scalar, vector, and tensor.

Bj — (‘-)jB + Ej, (‘-)jéj — () (rotation free mode + divergence free mode)

(5?.. ~ ~
HTij = ((‘)@(‘)3 — ‘_;Vz) Hp + (‘)@HTJ + (")jHT@'
! t

8;Hp; =0, 8;Hpr*, =0, Hppl; =0

ransverse-traceless mode

A, B, H; & Hr Scalar modes- - - Density/Curvature Fluctuations
B, & Hr; Vector modes- - -Decaying modes only
Hrr; j Tensor modes- - - Gravitational Waves

* In the linear perturbation theory, scalar, vector, and tensor modes are
decoupled from each other. Each Fourier mode also behaves independently.



* First consider scalar modes in Fourier space
ds® = —(14+2AY)dt*—2aBY;dtda’ +a*(6;;+2H Y 6;;4+2H7Y;;)dz' da’?

Y, Y;, Yi; are scalar harmonics defined by

_ ikx _ K ik.x _ kik; L ik-x
* Here “AY" means AY =Y A_Y, :/ d’k AY; etc.
= ke k (2r3 k'K

% Each perturbation variable is a quantity in Fourier space, e.g. A = Ap, (1)

% Physical meaning of each perturbation variable.

A: Fluctuation of the lapse function (Newtonian Potential)
B: Fluctuation of the shift vector
H,: Fluctuation of the spatial volume

H: Spatial anisotropy



% Here we started from the background FLRW spacetime and then incorporated
perturbations. But actually the real entity is an inhomogeneous spacetime which may
be decomposed to a background and perturbations around it. The definition of the
background is not unique. We have gauge modes corresponding to the freedoms
associated with the definition of the background. _—= HrT

2 /A’ B, H L>

0P(x) = @.(x) = P (x) packa® "
M Background 1 A, B, Hy,, Hr
actual geometry H

% To see how the gauge modes appear, we introduce two coordinate systems
corresponding to Background 1 (»#) and 2 (7o) and compare expressions of
perturbation variables at the same coordinate value.

% Suppose that two coordinates are related by the following scalar-type transformation.

—0 _ .0 - 0 _ 0 —1 1 1 1 7
T =x +o0xr  =x"+TY T =x +ox' =x" + LY gradient of a

% Then the metrices of the two coordinates are related as scalar
dx® HaP )
g, \T) = ——— 3l — ox
g/JJ/( ) ():I:Pg, ()SSU g(){j( )

— QW/(ZE) — .gou/(x) (O:I:a)g,u — Gur (T) (037"8),1/ — guu,)\(m)éiﬂ)\



* In terms of perturbation variables we find

_ . _ k
A=A_T, Hy=Hy, — 5L —HT.

_ . k _
B=B+al+-T. Ty = Hp + kL,

* We can constitute two functions independent of generators /. and T,

namely, gauge invariant quantities.
2

a - a a . a -
b, = A+-B —B——‘(H z_H)_ _
A +k +k 12 T + ST =Y =0
1 a aa _-
by = Hp+-Hp+-B— —H =Q=-¥
H L+3 T—|—k o 1T
1 V
R=H;+ -Hr Japanese
3 notation

Kodama&Sasaki PTP Suppl 78(1984)1



¥ Gauge-invariant variables can be defined similarly for matter contents, too.
(Example) A scalar field transforms as ¢(x)=¢(x) by definition.

o(t,x) = o(t) + ApY

o(t,x) =t =TY, 27 —LYI)=p(t —=TY)+ A¢pY
= o(t) — H()TY + ApY

c A= Ap — ¢T .
B=B+al+-T,
a

FT = Hr + kL,

5¢:A¢+%(B—%HT)¢

gauge-invariant scalar field perturbation



* In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

_ . _ k
A=A_T Hy=Hy—5L—HT.

B=B+alL+ —T. Hp = Hr + EL, Ap = A¢ — T’
a

*
Let [/ = ( then Lis fixed. Thenlet B = (), then T'is also fixed.

. 42
a - 1

4‘4 — @AJ HL E®H by = A+A1B+Z{B_F(HT+2%HT)

by = HL+§HT+%B—';—SII?

ds® = —(1 4+ 2P ,Y)dt* + a*(1 + 205Y )dz?
0 = Ao



* In fact, we do not need to start with the most general metric and consider
gauge transformation to find invariant quantities, but it is sufficient if the
gauge degrees of freedom, L and T are fixed.

_ . _ k
A=A_T Hy=Hy—5L—HT.

B=B+alL+ —T. Hp = Hr + EL, Ap = A¢ — T’
a

*
Let Ap = Ao — ¢T = 0, then T'is fixed.

Also let H = (, then L is fixed, too.

A(b — () : scalar field is homogeneous.



¥ For the moment, we work in the longitudinal gauge

ds? =

— (1420 ,Y)dt* + a*(1 + 2¢zY )dx?

and introduce scalar-type perturbations to the perfect fluid matter.

TH = Pgh +
p— p+opY,

P — P+ §PY, ity =

(—1,0,0,0) = (—

(p + P)uru” (utu, = —1)
1 = (1,00 1) —3

(1 — AY,vY? /a),

1 — AY, avY))

Since the gauge is already fixed, these variables are also gauge-invariant.

* Write down the perturbed Einstein equations 6G*, = 87 GoT*H,

kQ
G0y = (()H B, — 6HBy — z—@H) Y

z—qﬁA n z—@H) yi

G = 2kHD 4 — 2kdy) Y,

o 2 k2
(5(1”3'

3a

(2H2 n 4%) Gy +2Hb,) — 2y — GHOy — 20y — ==y

0T% = —pdY 555,0//)
5Tj0:—(P+P)SYj T, E(SP/P
7w, =0

5T0- — P ( Y . .
j = alp+ P)vY; anisotropic stress

01" ; = P(nd'Y +mrY")

2 k2 I ;
} Y — 5 (Pa+ Pm)Y",



% From Hamiltonian and momentum constraints we find
= , i H
2—@5;{ = 87GpA = 3H* A A=0+3(1+ w)%v (w = P/p)

Is the comoving density perturbation.

* Y termyields @y + P4 =0 @
2

k :
% As aresult we find the Poisson equation ——Q@A = ArGpA @
a

%* Dynamical equation may be found from 5;’-Yterm or from 01*#,., =0 .

: k
A—-3HwA=—(14+w)—v @ continuity eqn.
a

1k k , _dp
v+ Hv = p—I——Pa(OP —cs%0p + s pA) + @A @ Eulereqn. ¢ = e
* From D2B@, we find
- : 3 H
by + Hby = —AnG(p + P)%fv —~(L+w)HT T = ‘:”7@

Momentum constraint

.3 ‘
T+ SH(L+w)T = —Hbp + - — (cs?A+wl)

Euler eqn. pl'=0P — (’:325/9




X Subtracting each other we find
d 0 (c2A+wl) oM b1y = 8rGipA = 31172
E@H—T):_l_i_w(csﬂthff 5 %u = 8rlpa =.

If there are only adiabatic fluctuations, e.g., single fluctuating component, we find
pl'=0P —c,?0p=0,since ¢2 = P/p=06P/dp holds. Then

d a . 202H [k \° I
— (P —7) =— A= -2 o —
dt( = ) 1 —I—“w(' 3(1 + w) (a,H) H \ 0 for aH —0

superhorizon limit

% Comoving curvature perturbation
al i i i
by —T =R — v=R, 'S conseryed qutsnde thg Hubble radius
k if only adiabatic fluctuations are present.

er with £ = K (X, ¢), we find
Kx

Kx +2XKxx

Fvature perturbation also holds.

% In the case of single scalar-field ma

e A+wl =EA  with

so the conservation of comoving

This gives the sound velocity of a scalar field.
It is unity for canonical fields.



* Using the momentum constraint we can express R with @7 only.

R.=Pyg—1T =Py + (P + H '®y) = ¢ Bardeen’s &

3(1 4 w)

* Q — const = (U1 can be solved as a first-order differential equation

_ H [
% The solution is given by @ = () (l — — / a(t’)dt’)

a
namely,
H t
Growing adiabatic mode @5 = (' (l — — / a(t')dt’)
G ]
H
Decaying adiabatic mode ng — —
a

§ : ~1 2C forw=1
* Whenw = P/p = const we find ¢%= ¢, (l + 2 ) :{ 31 3

3(1 +w) 3C, forw=0
H

% In a contracting phase the “Decaying mode” &% = — grows severely.
a






Curvature perturbation from inflation

% Incorporate curvature perturbation to FLRW Universe and calculate
its action in the Einstein+scalar model.

/d%\/—{ r_ R+ K(X, O)] inglude_ both potential-driven and
k-inflation models

% Background equations

3MZH? =p=2XKyx - K, 2MZH+3M2H>=P=K,
G G G

. - -PlX(fJ 2 2 I‘{r 2 PX I‘.ch')

o+ 3He2p + — oo — — 0, with ¢ = = — , -

' s K I&X PxX Ky +2XKxy
sound speed of perturbation

% We adopt 3+1 ADM decomposition which is useful to separate constraint equations.
ds* = —N?dt* + h;(dz' + N'dt)(dz? + N7 dt), hy; = a’(t)e?™6;;

R = 'R .represents comoving curvature perturbation conserved outside the horizon.

No gauge mode in L, since we have Hr = Hp + kL = 0.
Setting Ap = Ap — &T = 0, gauge in T'is also fixed.




ds* = —N?dt* + h;;(dz' + N'dt)(dz? + N2 dt), h;; = a®(t)e*2s;;

¥ The action then reads

M2 y
S = ;/d%\/_ﬁf(JfCRﬁwQﬁ)jL ; d4m-\/Ei\f‘1(Eng”—E2)+Q

Total derivative terms

where E;; = not affecting field eqgs

%(J"l@'j — ‘Nﬂj _ JNJH)? E=TvE

w Weset N — 1 +( ), N; :8_5?; to analyze linear scalar perturbations.

* The Hamiltonian constraint obtained by differentiation w.r.t. N reads

K Kx 1 >
R® +2— —4X— — —(E;EY — E*) =0
2z Y e )
H A~ J— 2. 2 - ‘ 2 1~

a a



¥ The momentum constraint obtained by differentiation w.r.t. N' reads

(B - ES)| =2Ha;—2R;=0" a=R/H
J

* Now that both @ and ¥ have been expressed by 2 , we can obtain
the second order action for R as

by
H?

52
R — &y H2

(OR)?  H
2 }’ <

a

aN2X2 ayley

% Introducing new variables, z= ,and v =MaozZR,

CS .
the action is expressed with the conformal time 7 as

_ 1 ‘ ; ‘ 2,
So = — /dfr]dB:I: [1)’2 —c2(0v)* + —2)2]
2 - z
which is equivalent to an action of a free scalar field with a time-dependent
S . ‘ S 2N H
mass squared = = HQ[Q—E s+ My g Iy 2
q p (aIl)= |( H s—|—2)( s—|—2) H+2H
Cs e
S = ' —
HCS H HEH



1 | " | )
Sy = = [ dnd>x ["U’Z Oov)* + —1)2} = G o _tH
2 =75 / ) cz(0v)? . s =

ZN

=(all)? |2 —en — s+ 21)(1 - s +7’—H)—§I+jﬂ =(aH)*(2 + q)

z

% Using the de Sitter scale factor a =—HL, the normalized mode function reads

n

’my) 1/2 (1) 1 ( I ) ke 3 1N\3 3
Ve = | —— H) "/ (—ken) & 1 — 0 T y==(1+ = -
Uk ( 1 v ( Cs 77) \/% kcsn) € 2 ( gq) 2

% |t behaves similarly to a massless scalar field in de Sitter background,
so that long-wave nearly scale-invariant fluctuations will be generated.

Pr(k) = Ak B Ak B H?
RAR = (27)3 C@2m)3 2zl 8m2MZcsen

evaluated at the sound
horizon crossing —kc . =1



Ak ,, Ak v |2 H?
Pr(k) = 3 Ril* = 3 — 2172
(27) (2m)3 | 2 8m2MEcsen

* The spectral index of the curvature perturbation is given by

- dInPr(k) i & H

Ng — = —2eg—np—S fH=E"mm ST H.o HTEL
9 dink / i ° H
* In the canonical slow-roll inflation, using the slow-roll equations we find
H §# 36 M (V'I V"
E,. =— = = = S =& =M — =2 +4¢
H H2 MéHZ 2V T 2 V V 77V G V 77[‘[ 77V 14
SO 3Hp=-V"

n —1=-6¢, +2n,

*  The scale dependence of the spectral index, “Running”
dns VIVI”
dink Ve

=16¢,1, —24¢, - 2¢, & =M,

These are important observable quantities!




Tensor perturbation from inflation
* We derive a second-order action for the tensor perturbation %, .

It is wise to make use of the known results on GW in the Minkowski space.
So we first study perturbation around 7. taking metric as 9ur = Nuv + Py,

Taking the TT gauge hoo = ho; = 0, hL = hjﬁ =} h,;;. — 0,
the Ricci scalar reads up to the second order
. 3 1.
R = hY h%iu + Zh”’“hijsﬂ — 522,”’ hijii
X The transformation from 9, = 7. + P
to ds* = a*(n) [~dn? + (§;; + hyj)dx'da?] = §,,dz*dx” can be done
by the conformal transformation g, = 27g,,,,.
* The Ricci tensors in two conformal metrices are related as
fiw =R, —2V,V,In2 —g,,0°"VV,.In (2

+2V, In 02V, In 2 — g,,9° Vo In 2V, In (2



* Putting {2 = a(n) , the Ricci scalar reads up to the second order

a!!

~ ‘ ] a’
R=a"" (R +6— — S—h,”h;j)
a a
% Since we are interested in tensor perturbations in the inflaitonary Universe

let us introduce a cosmological constant to drive inflation, to consider

_ Mz [ -~ =
Sy = 2(’ /(R — 2/)/ —gd%‘ using the background
" 2nd order eq. Aa* = 2aad" — a'?

— j\[g}' d d3 2(} ’if} 7’ 7} ) ijﬂ)
— 3 na-xa”(h; h; DRUY
* Introducing new variables z1 = a/2,u;; = Mgzrh;;
the action reads
1 ‘ ‘ ‘ a!! ‘
Yy 3 , 12 ny 2 . 2
ST = 5 dnd’x [uz—j — (Vuij )™ + — Ui
which is equivalent to the action of a massless scalar field.

In the de Sitter background a = —1/(Hn), we find

12
A _ (—@) Hm(—kn)eé(k), A =4, X

tij 1 32

as before.



% Introducing new variables zp = a/2, ui; = Magzrhi;
the action reads

1 q a!! 5
ST_Z_ dnd’x { — (Vug;)* —|—;uj}

which is equivalent to the action of a massless scalar field.
In the de Sitter background @ = —1/(Hn), we find

A T\ /2 A
Ujj = (_Z) H;;%)( knei;(k), A=+,x
as before. 1
B 1 1 —n\2 YT _31—-¢/3
* Incase g, %0 , we can express a=———- — (—m) SRS ey

™\ 1/2 .
ufj = (—I]) Hﬁ?(—kn)e%(k), A=+, X

eﬁ' (k) is the polarization tensor with (e (keI B (k) = 04

* The power spectrum reads

47rk3} peij _ Amk? uutt o 2m?
vijh Y = =

(271')‘ Mézi Wzﬂfé




2 H?
Pr(k) = ——
Pr(k) r(k) w2 M2
T =
ST2M2cyc

r = 16cseg = —8csny  consistency relation



Some of the recent particle physics models of inflation

" Kk Newer models of “stringy” inflation i

L=}

~ « DE | extra dimension
* MonOdOrOmy mOdel (Silverstein & Tong 04)
| r =0.03 (Silverstein & Westphal 08) .
] i ) bhyama & Kinoshita 07)
* Re » Fibre inflation ), Kallosh, Linde &Quevedo 04)

r =0.005 (Cicoli, Burgers, & Quevedo 08)

A, * Warped Wilsonline DBI inflation
r~0.1 (Avgoustidis & Zavala 08)

Ining of parameters

vity
etc

Hiyysnauui  (kaioper, sormo & v us)

r =0.003 detectable tensor perturbation even if variation in ¢ is small

Chaoaotic inflation in supergravity with shift symmetry
(Kawasaki, Yamaguchi & Yanagida 00)
r =0.15 allows large variation of ¢ thanks to the shift symmetry

MSSM inflation (Allahverdi, Enqvist, Garcia-Bellido & Mazumdar 06)
The inflaton can be identified in MSSM w/ fine-tuned parameters.
r ~10-° It can occur only if previous inflation with a slightly higher

energy scale is realized with a sufficiently low reheat temperature,
very contrived. (Kamada & JY 09)




Low frequency components may be observed by
B-mode polarization of CMB anisotropy

Quadrupole
Anisotropy

Thomson
Scattering

Linear
Polarization

 Polarization is generated by quadrupole temperature anisotropy.
* E-mode from both scalar (density) and tensor perturbations.
* B-mode only from tensor perturbations.

Planned or ongoing experiments and their expected sensitivity

PLANCK r ~0.1 QUIET+PolarBear r ~0.01
EPIC r ~0.001
CMB-POL ~r ~0.001

WMAP7 r <0.25



Just one summary plot !
by M. Hazumi

Power Law

Chaotic p=1

Chaotic p=0.1

SSB (N,=47-62)

Planck

QUIET+PolarBeaR
CMB Satellite

- Foregrounde,
[ oreégroun Synchrotron+Dust

f 10

o Foreground. - -~

-




Theory and observations basically agree.

WMAP 7yr § 1
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causal seed

model ™

(cosmic strings
textures etc) rvature model

/

Inflation (adiabatic)



Theory and observations basically agree.

WMAP 7yr § 1

ACBAR ¥

QUaD &

6 parameter fit .
of flat A CDM model

100 500 1000 1500 2000
Multipole Moment (/)

We wish to proceed model selection of inflation...



Observables: Large—field model
Vigl= —ﬂ1¢ ]
» Slow-roll parameters ¢, =17, = 2(%) &, =0

* Number of e-folds from ¢ =¢, to the end of inflation

N = | Hdt = | H 3H Vigldg 4(¢—Nj

MV'4] Mg
» Amplitude of fluctuatlons I y
2 aYer> 3 S

H2 | mN -9 M
®, (ky) = = [M j =2.4x10 Chaotic inflation

87°Mle, 61
5. @N =55

—m=1.6x10"GeV, 1<8x107" for %

*» The coupling between the inflaton and other fields must be small.
2

e.g. Yukawa coupling 4 <107 decay width 77, = ;l—m <6x10°GeV
7T

/9

gy (200\M Ly YR
Mpils = 10 - GeV

G+ 10°GeV



Observables: Large—field model
Vgl =~ mig?
2 2
* Slow-roll parameters ¢, =7, :2(%j &, =0

* Number of e-folds from ¢ =¢, to the end of inflation

2 < _¢]
d$ 3H Vg 1( 4 Y

V'[g M(z; Tg] 4\ M,
» Spectral index and its scale dependence é)/I./A
: Cﬁg e%

2 d M ]
s —6.6x107". Chaotic inflation

n =1-—=0.964,
@N =55

N dink

* Tensor-to-scalar ratio

r=16¢, =0.15. Observable by Planck!



Observables Small-f eld mode!

—H[ (30 — v?) . 96 M 2, *
(=22 S T (P

* |nflation ends when &, =&, =1 at the field value

' (1() 32 ()f I 5 5
H = — 111 ——— (0% — ON



~
<.

Observables: Small-field model!

» Curvature perturbation v

. I\ A AR . ) AR
A2, — v2)? 238 (J[(T« ) . A3° .
68T ME %, 76872 \on ) T6872(F — V2)2

Taking N =55, =15, the normalization gives 4 =7x10".

Pr (ko) =

» Spectral index and its scale dependence
8(3¢% + v?)ME

| (()2\ — 2)2

dn. (320023, + 19203 ) M2

dink (0% — v2)*




Observables: Hybrid inflation model
Vigl=V, +m72¢2 near the origin V‘

» Consider false-vacuum dominated case

. _M; ﬁzzL(ﬁj4 iz M.m>  m’
o2\, 18\H) \M,) W= T3
0

*  Spectral index and its scale dependence

2
n —1=2n, :32%

e ) o) o G
dInk 3H? ) | M, M, M,

x Tensor-to-scalar ratio

r:2(2m22j [ij =(n—1) [ij ~ o.oos[ij
3H? | \ M, M, M,




Inflation models may be distinguished by observations.

Largel-field Hybréd
manielels] * .................................. |nﬂat§0n .................

I x
i M= 50 60 1
w'ele d
* med 6|0
® " Nflalgn m? 0| O ]
2 \ wzm
|  }
|
| ;|
|

Small-field mciiey

0.5

onel JejedsS-10sus |

B e e T >
0.8 0.9 1 11

Spectral index n,

l"nL‘_X [J' + B*A(:) 4+ H 0 (Dodelson, Kinney, Kolb 97)




Dewviation from Gaussian: NonGaussianity of fluctuations

may also help distinguish models.

» Potential-driven slow-roll models
NonGaussianity is small, because the inflaton is very weakly coupled
with other fields as we have seen.

» Kk-inflation, G-inflation,...
NonGaussianity can be large.

» Beyond the single-field inflation

NO detection yet



Theory and observations basically agree.

WMAP 7yr § 1
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If you look at it closer in detall...




30 < kd <400 35 < kd <405

In fact, 1f we change the wavenumber domain of decomposition slightly,
we obtain a dip rather than an excess even for the band power analysis.



P
o
o
o

I(I+1)C,/2n [uK?]
N G
g g

Angular Scale
2° 0.5°

100 500
Multipole moment !

150 200 250

kd = /¢

Deviation around kd =¢40
can be seen even in the
binned C , but those at
125 can not be seen there.

(Nagata & JY 08)




Forward Analysis

*  Assume various shapes of modified power spectrum P(k)
with three additional parameters in addition to the standard
power-law.

«  Perform Markov-Chain Monte Carlo analysis with CosmoMC

with these three additional parameters in addition to the standard
6 parameter /A CDM model.



Transfer function shows that C, depends on P(k) with kd >/ .

C APk Am
(2m)3 (20 4+ 1)2

Xo(k)*P (k)

} :

T EIHI; nop | M l j* i A it o T@
i Radiire s iTas

100 150 200 250 300 350

ked = /0

10 100

multipole moment () Simply adding an extra power
around kd ~125 does not
much improve the likelihood,
because 1t modifies the
successful fit of power-law
model at smaller p’s.

If we add some extra power on P(k)
at kd ~125, it would modify
all C/’swith (<kd =125 .



Consider power spectra which change C,’s only locally.

A(k) = K> P(k)

A ¢
v type
I 1 o=

\/\/ Height, location, & width of the peak
Wtype  ,re 3 additional parameters.

nagata-type
V-type
W-type




2 OVCES d d D 0( O d(d OINdl PDd C
Power law A-type VA-type S-type W-type
Q, 0.0438 0.0441 0.0443 0.0441 0.0444
Q, 0.256 0.256 0.260 0.257 0.262
(N 0.744 0.744 0.740 0.743 0.738
H, 72.1 72.1 71.7 72.0 71.6
10'°A 23.88 23.24 23.51 23.34 23.90
ng 0.964 0.975 0.969 0.970 0.964
T 0.0864 0.0879 0.0846 0.0835 0.0845
AxZ 0 —6.5 —19 —22 —16
k.d 124.5 124.4 124.5 e
10'°B 23.80 47.26 55.66 37.95
—2InL 2658.1 2651.6 2639.1 2636.2 2641.8
D.o.F 3 3 3 3
o 08
DIOVE s ore e 00 J 3
or- er, 8 g 10 F S o § eria



Unlike our reconstruction methods, MCMC calculations use
not only TT data but also TE data.

A due to improvement of TT fit = —12.5
Ay?, due to improvement of TE fit= —8.5

It 1s intriguing that our modified spectra improve TE fit significantly
even 1f we only used TT data in the beginning.

TT(temp-temp) data and model TE(temp-Epol) data and model

5500 +  WMAPS
5000
4500

' 4000

g 3500 0

-50 &+

B
o
3
x

3000 F7 LL ¥
2500 [ 1 _ -100
2000 y
Yoo 0
oo 105 10




*

Posterior probability to find vanishingly small deviation from a power-law.

PB<1X1071) =48 X107

based on a local analysis in the range Akd =20 .

Posterior probability to find vanishingly small deviation from a power-law
at any observed wavenumber domain.

P(B<1X10710) ~8 X 104"

based on a global analysis in the range 40 < kd <380 .

This may or may not be so by chance.
In either case, however,...



The presence of such a fine structure changes the estimate of

other cosmological parameters at an appreciable level by Planck.
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Higher frequency tensor perturbation

Its spectrum can be used to probe post-inflationary thermal history
of the early Universe.

r sensitivity curves of DECIGO
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Conclusion

The precision cosmology is entering a new era with even higher
precision.

Hopefully we will be able to know which if any is the correct
inflation model that occurred at the birth of our Universe.






