見えてきた宇宙大構造の進化

日影 千秋

名古屋大学 素粒子宇宙起源研究機構(KMI)

宇宙大構造

重力不安定性による構造進化

宇宙初期にできた微小なゆらぎが重力成長し、現在の大構造へと発展

宇宙大構造から何が分かるか?

- ・宇宙のエネルギー組成
- ・宇宙の膨張史
- ・重力のテスト
- ニュートリノ質量、世代数
- 構造の起源:非ガウス性
- ダークマターの性質

などなど

EdS ($\Omega_m = 1$)

宇宙大構造のトレーサ

Contents

- 銀河分布
 - バリオン音響振動(BA0)
 - ・赤方偏移歪み
 - ・パワースペクトル
 - SDSS, BOSS銀河サーベイの観測結果
- 重カレンズ
- ・今後のサーベイ
 - Sumire, Euclid

加速する宇宙

標準光源(SN la)を使った距離測定

宇宙の膨張率

Dark Energy or Modified Gravity?

Chaplygin

gas p=-A/o

低密度

高密度

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$

f(R)

Chameleon mechanism

DGP

Dark Energy Probes

<u>la型超新星</u>∶光度距離D_L(z)

Pros: 宇宙の膨張率を直接測ることができる Cons: 超新星の進化、ダスト補正の不定性 <mark>銀河分布</mark>:BAOを使った距離D_A(z),H(z),赤方偏移歪みから構造成長率 Pros: 線形摂動論に基づく, BAOはAstrophysicalな不定性が小さい Cons: 非線形進化,銀河バイアス, Finger-of-Godの不定性 <u>重力レンズ:宇宙大構造によるレンズ歪みの空間パターン</u> Pros: 質量分布を直接調べることができる Cons: photo-z, intrinsic alignment, 銀河形状測定, PFSの不定性 <u>銀河団</u>:数分布、質量関数、空間分布 Pros: ポテンシャル大

Cons:銀河団質量の推定の不定性

バリオン音響振動(BAO)

バリオンと光子の摂動を考える
 宇宙初期には、バリオンと光子はように振る舞う
 光の圧力によってバリオンは光速

- 宇宙が冷え、電子と陽子が結合し が切れる(その時の光が、CMB)

Credit: Martin

- 光の圧力を失ったバリオンは、ほとんど外側に広がらず、 100Mpc/h付近に特徴的なスケールをもったゆらぎとなる

- 重力成長したダークマターのゆらぎに、BAOの痕跡が残る

Inverse distance ladder

SNなどの距離指標は、近傍での測定を基準として、遠方へ 距離を伸ばしていった。BAOは逆に、遠方(z~1100)のCMB の振動スケールを基準とした距離指標

Standard Ruler

BAOは宇宙の幾何学を使った距離指標、Astrophysicalな 不定性はほとんどないrobustなprobe

Eisenstein et al. 2005

Alcock-Paczynski test

BAOの非等方性を使った宇宙論テスト

 $\Delta z/H(z)$

視線

方向

間違った宇宙モデルのもとで距離を変換すると、一般にBA0は非等方になる

非等方性パラメター

 $F(z) = \frac{1+z}{---}D_{\rm A}(z)H(z)$

SDSS III BOSS survey(2009-2014)

Goal

distance measurements using BAO with 1% (z=0.35 and 0.6) and 1.5% (z=2.5) precisions

Target

1,500,000 LRGs (0.2<z<0.8) 160,000 QSOs (2.2<z<3) over 10,000 deg² of sky

Instruments SDSS 2.5m telescope at Apache Point observatory (2788m, 1.2"seeing) Camera: 30 2kx2k CCDs with 5 filters (*r*,*i*,*u*,*z*,*g*), 6deg² FOV Spectrographs: 1000 fibers (2" diameter), R~2000, 360-1000nm

BOSS CMASS Catalog

CMASS (Constant stellar MASS cut) 264,283 LRGs in 0.43 < z < 0.7 $z_{eff}=0.57$, $V_{eff}=2.2(Gpc/h)^3$

Anderson et al. 2012

Sky coverage of current data (3275deg²) Grey: expected total (10269deg²)

BOSS BAO Measurement

2点相関関数 $\xi(r) = \langle \delta(\mathbf{x}) \delta(\mathbf{x}+r) \rangle$

パワースペクトル $P(k) = \langle | \tilde{\delta}_{\mathbf{k}} |^2 angle$

D_v(z=0.57)=2094±34Mpc (1.7%エラー)

WiggleZ Dark Energy Survey

<u>Goal</u>

2% distance measurement at z=0.7

<u>Target</u>

240,000 blue emission line galaxies over 1000 deg² of sky in 0.2<z<1 (~1Gpc³ volume) <u>Instrument</u> 4m Anglo-Australian Telescope AAOmega/2df spectrograph 276 nights (2006-2011)

Distance & Anistoropy measurements using BAO

Reconstruction of BAO

BAOのシグナルは構造の進化の 非線形性によって弱まる

銀河のゆらぎを均す方向に銀河を動かすことで、非線形な 影響を部分的に取り除くこと ができ、BAOのシグナルが復活 する

 $\nabla \cdot \boldsymbol{q} = -\delta$

Application to SDSS DR7 LRG

Padmanabhan et al. 2012

 D_v/r_s =8.89±0.31 \rightarrow 8.88±0.17 Reconstructionによって、距離の測定精度が2倍近く向上!

credit: A.Kravtsov

赤方偏移歪み

銀河までの距離は赤方偏移(後退速度)からハッブル則を使って推定 →個々の銀河の特異速度によって、観測される銀河分布は歪む

$$z_{obs} = z_{true} + \delta v/c$$

線形領域

大スケールの銀河運動により視 線方向につぶれる(Kaiser 1987)

非線形領域

ランダムな運動によって視線方 向に伸びる "Finger-of-God"

Hamilton 1998

赤方偏移 歪みを使った Growth Rate 測定

線形近似では、Growth Rateは特異速度の大きさで決まる →大スケールでの赤方偏移歪みの大きさから、Growth Rateの推定 ができる

Anisotropy Measurement

BOSS CMASS サンプルを使った 2次元の2点相関関数 $\xi(r_p, r_\pi)$

Reid et al. 2012

視線

方向

Growth rate への制限

Dark Energy parameterへの制限

BAO, Growth Rateからの 宇宙論パラメター制限

Cosmological model	Data set	$\Omega_{\rm m}$	$1000\Omega_k$	H ₀	wo	wa
ACDM	CMB + CMASS + SNeIa	0.285 ± 0.014	0	68.9 ± 1.1	-1	0
ACDM	CMB + CMASS	0.291 ± 0.014	0	68.5 ± 1.2	$H_0 \cdot 1 = 5$	5%
ACDM	$CMB + CMASS + H_0$	0.281 ± 0.013	0	69.5 ± 1.1	-1	v
ΟΛCDM	CMB + CMASS + SNeIa	0.281 ± 0.014	-9.2 ± 5.0	67.7 ± 1.3	-1	0
ΟΛCDM	CMB + CMASS	0.288 ± 0.017	-8.5 ± -5.4	67.4 ± 1.3	-1	0
ΟΛCDM	$CMB + CMASS + H_0$	0.277 ± 0.014	-6.0 ± 4.9	68.8 ± 1.3	-1	0
wCDM	CMB + CMASS + SNeIa	0.292 ± 0.015	\bigcirc	68.0 ± 1.4	-0.94 ± 0.05	0
wCDM	CMB + CMASS	0.313 ± 0.017	$ \Sigma_{K}$.	65.9 ± 1.5	-0.87 ± 0.05	w:5%
wCDM	$CMB + CMASS + H_0$	0.291 ± 0.015	-0.9%	68.2 ± 1.4	-0.93 ± 0.05	0
OwCDM	CMB + CMASS + SNeIa	0.285 ± 0.017	-8.2 ± 5.5	67.4 ± 1.5	-0.98 ± 0.05	0
OwCDM	CMB + CMASS	0.307 ± 0.022	-3.9 ± 6.8	65.9 ± 1.6	-0.90 ± 0.07	0
OwCDM	$CMB + CMASS + H_0$	0.285 ± 0.018	-3.7 ± 5.7	68.2 ± 1.5	-0.95 ± 0.07	0
w ₀ w _a CDM	CMB + CMASS + SNeIa	0.280 ± 0.018	0	68.8 ± 1.6	$\textbf{-1.13} \pm 0.12$	0.65 ± 0.36
w ₀ w _a CDM	CMB + CMASS	0.313 ± 0.037	0	66.2 ± 2.8	$\textbf{-0.86} \pm 0.34$	$\textbf{-0.14} \pm \textbf{1.04}$
w ₀ w _a CDM	$CMB + CMASS + H_0$	0.261 ± 0.037	0	71.2 ± 2.3	$\textbf{-1.29} \pm 0.19$	1.02 ± 0.48

Test of General Relativity (GR)

$$f(z)=\Omega_{
m m}(z)^{\gamma}$$

$$\ddot{D} + 2H\dot{D} - 4\pi G_{\rm eff}\bar{\rho}_m a^2 D = 0$$

$$G_{\text{eff}} = G(1 + \mu_s)$$

Broadband shape of LSS power spectrum

ゆらぎの各スケールでの フーリエ振幅の2乗 $P(k) = < |\delta_k|^2 >$ CMB、銀河分布、重カレ ンズサーベイから幅広い スケールのゆらぎを調べ ることが可能

Neutrino Properties

What is the neutrino absolute mass? What is the hierarchy? Neutrinos are Majorana fermions?

Free-streaming damping ニュートリノの自由運動によって小スケール(k>kfs)のゆらぎが減衰

Free-streaming scale

SDSS LRG DR7 P(k)

BAO+Broadband shape reduces the degeneracy between D_{ν} and $\Omega_{m}h^{2}$

 $m_{v,tot} < 0.62 eV (WMAP5 + P(k))$

Reid et al. 2010

赤方偏移空間での質量パワースペクトル

Taruya, Nishimichi, Saito 2010

k<O.2h/Mpcまで摂動論とSimulationは非常に良く一致

不定性 2: 銀河バイアス

銀河個数分布と質量分布の関係

<u>線形バイアス</u> δg=bδm (Kaiser 1984)

<u>非線形バイアス</u> δg=b1δm+b2δm²+・・・ (Fry & Gaztanaga 1993)

非線形確率的バイアス

 $P(\delta_g | \delta_m)$ (Dekel & Lahav 1999)

z=1

z=0

Colberg et al.

不定性 3: Finger-of-God (FoG)

銀河のランダム運動による非線形な赤方偏移歪みの効果

FoGによるpowerの減衰をガウシアンやローレンツ関数で近似 e.g., D_{FoG} =exp(- $\sigma^2 k^2$), 1/(1+ $\sigma^2 k^2$)

(弱い)重カレンズ

宇宙大規模構造による重カレンズ効果を測ることで、宇宙の質量 (ダークマター)分布を調べることができる

多くの銀河の形(楕円率)を平均し、レンズによる歪みを測定

楕円率

$$\epsilon = \epsilon_1 + i\epsilon_2 = \left(rac{a^2 - b^2}{a^2 + b^2}
ight) \exp(2i\epsilon)$$

Shear

$$\gamma = \langle \epsilon
angle / 2 \mathcal{R} \quad \mathcal{R} = 1 - \langle \epsilon^2
angle$$

R: Shear Responsibility

Cosmic Shear

重カレンズによる歪みは、距離と質量密度ゆらぎの両方に依存する

 $\gamma \propto \Omega_{m0} \int_0^{z_s} dz_L rac{d_s(z_L)d_s(z_s-z_L)}{d_s(z_s)} \delta(z_L)$

credit:Hamana

Lensing Tomography

Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)

Weak lensing survey over 170deg²(4 patches) 3.6m telescope in Maunakea, Hawaii MegaCAM: 340 Megapix, FOV 1° ×1°, 0.18" pixel, u*g'r'i'z', i'<24.5 2003-2009, 450 night (2300 hours)

銀河・銀河レンズ

SDSS galaxies

10

1.2x10⁵lense

9x10⁶source

0.1

r [h-1 Mpc]

銀河分布と遠方銀河のレンズ歪みとの相互相関

銀河周りの質量分布(銀河バイアス)の情報が得られる

レンズ情報を使った銀河バイアスの制限

Mandelbaum et al. 2012

Bias-Free Einstein Gravity Test

オフセット銀河によるFinger-of-God

ダークマターハロー

Hikage et al. 2012

銀河の速度分散(FoGの大きさ)は、ハローの質量中心からの距離(オフセット)に依存する

レンズ情報を使ったFoG補正

銀河周りの重力レンズ情報から、銀河のオフセット(ハロー質量中 心からの距離)を測定することで、FoGの影響を補正できる

Impact on Growth Rate Measurement

レンズ情報を使うことで、Growth rateの測定精度が2倍向上

Modified Gravity from Lensing

重カレンズ歪みの大きさは、ポテンシャル(Ψ),曲率(φ)の和に依存

Gravity test using Galaxy Redshift Survey & Lensing

Effective gravitational contant g₀=G_{eff}/G

Ratio of Metric perturbation $\eta = \Phi/\Psi$

Guzik, Jain, Takada 2009

SUbaru Measurement of Images and REdshift (SUMIRE)

Joint Mission of Imaging and Redshift surveys using 8.2m Subaru Telescope

Hyper-Suprime Cam (HSC)

- 1400 deg² sky (overlap w ACT, BOSS)
- 30gals/arcmin², z_{mean}=1, i~26(5σ)
- 1.5 deg FoV, grizy band, 0.16"pix,
- 2013-2017

Prime Focus Spectrograph (PFS)

- 1400 deg² of sky (overlap with HSC)
- Redshift of LRGs + OII emitters at 0.8<z<2.4 (9.3 Gpc/h³ comoving vol)
- 2400 fibers, 380--1300nm
- 2018-2023 (planed)

Mauna Kea, Hawaii, 4139m alt., 0.6-0.7" seeing

Hyper Suprime Camera

800M pix (106 2Kx4K CCDs) Hamamatsu Photonics-NAOJ collaboration 1.5 deg FoV, 0.16"pix

HST 3'

PFS Instruments

PFS Forecast

2-3% measurements of $D_A(z)$, H(z) for 6 redshift bins

PFS Forecast II

Euclid

- ESA M-class mission
- Dark energy probe via weak lensing & BAO
- Imaging 20000 deg² sky, 40gals/arcmin²
- Spectrum of 70M Hα emitters at 0.5<z<2,
- 1.2m telescope
- FOV 0.5deg², rizYJH band (550--1800nm), 0.2-0.3" pixel size
- Spectrograph: 1-2µm, R=500
- 2020-2025 (planed)

Euclid Forecast

Euclid White Paper (arXiv:1206.1225)

Summary

- 宇宙大構造の精密観測から、宇宙の加速膨張の謎、
 ニュートリノ質量、初期ゆらぎの起源を探ることができる
- 現在、BOSSやWiggleZによる銀河サーベイが進行中。BAO が2%, Growth Rateは6%の誤差で測定され、宇宙の曲率 0.5%、Holt1.5%, wが5%で測定、重力のテストが行われる
- 銀河のパワースペクトル情報は、ニュートリノの性質を 探る上で特に重要。しかし、銀河バイアスやFinger-of-Godの不定性を克服しなくてはならない
- 重力レンズ情報を組み合わせることで、銀河と暗黒物質の関係が明らかになり、不定性を減らすことができる
- 今後、SumireやEuclidなど、銀河分光と撮像(重カレンズ)を組み合わせた大規模銀河サーベイが計画されており、より一層の発展が期待できる