Fermiガンマ線宇宙望遠鏡で見えてきた 宇宙高エネルギー現象

深沢泰司 (広島大学大学院理学研究科)

目次

 1. ガンマ線観測とフェルミ衛星について
 2. 宇宙線関係の成果の概要
 3. ガンマ線パルサー、パルサー星雲
 4. ガンマ線連星
 5. ガンマ線バースト(多分、スキップ)
 6. 活動銀河核 (ブレーザー、新種ガンマ線天体、遠方天体)

> フェルミ衛星の結果に関するレファレンスは、多くを占める Abdo et al.かAckermann et al. については、省略しています。

1. ガンマ線観測とフェルミ衛星

Oガンマ線観測でわかること

ガンマ線を放射するもの

→ 熱的粒子

電子、陽子 非熱的粒子 🖌

非平衡状態 天体の形成進化に伴う現象

重い素粒子の崩壊

核ガンマ線

宇宙の高エネルギー現象

粒子加速 超新星残骸、ジェット加速、パルサー、 ガンマ線バースト、銀河団...

地上では実現できないほど、効率の良い加速機構とは? 宇宙線の起源、伝播

星、銀河形成との関連

核ガンマ線 星や宇宙線による重元素生成

残存粒子の探査 ダークマターなど 遠方宇宙のプローブ ガンマ線の吸収を利用

GeVガンマ線 ... コンバーター(Pb, W) + 飛跡検出器(スパークチェンバー、SSD) + カロリメータ(シンチレーター)

TeVガンマ線 ... 大気(コンバーター) + チェレンコフ光検出器(望遠鏡、PMT) 粒子検出器(シンチレーター)

カロリメータ NaI, CsI

3つのガンマ線観測装置の比較

	Gamma Ray Energy	Field of View (sr)	Point Spread Function	Sensitivity (erg/cm²/sec)
Fermi	0.02-300 GeV	4	0.04°	1 · 10 ⁻¹²
Veritas / HESS	0.2-100 TeV	0.002	0.05°	0.2 · 10 ⁻¹²
Milagro	20-300 TeV	2	0.7 °	2 · 10 ⁻¹²

GeV, TeVシャワー検出 視野大きい 空間分解能悪い TeVチェレンコフ検出 視野狭い 空間分解能良い

フェルミガンマ線宇宙望遠鏡 (フェルミ衛星)

- Launch from Cape
 Canaveral Air Station 11
 June 2008 at 12:05PM
 EDT
- Circular orbit, 565 km altitude (96 min period), 25.6 deg inclination.

Tracker

観測オペレーション

- ・ 基本的に全天サーベイモード
 - 2 orbits (3 hours)ごとに全天を 掃く。全天の各天体は2 orbitご とに30分づつ視野に入る
 - 数時間で中継衛星などを通して データが地上へ
 - 数日で前衛星EGRETの感度を 達成

 ・何か重要な天体現象が起きた時は、その天体を視野中心に向けて固定して観測 (これまで1回 blazar 3C454.3フレア)
 ・明るい ガンマ線バーストが起きたときは、自動的に視野を向ける

(これまで数回)

2year map >100MeV Front only

4 B 16 32 63 12E 251 504 10C3

2year map >1GeV Front+Bak

Fermi Large Area Telescope 2FGL catalog

Credit: Fermi Large Area Telescope Collaboration

The Fermi LAT 2FGL Source Catalog フェルミ衛星2年間のサーベイで検出された天体

1873 sources (4.1 σ significance threshold); symbol size encodes >1 GeV flux

Classifications

Dermi

	Identified	Associated
Pulsar, identified by pulsations	83	-
Pulsar, no pulsations seen in LAT yet	-	25
Pulsar wind nebula	3	0
Supernova remnant	6	4
Supernova remnant / Pulsar wind nebula	-	58
Globular cluster	0	11
High-mass binary	4	0
Nova	1	0
BL Lac type of blazar	7	428
FSRQ type of blazar	17	353
Non-blazar active galaxy	1	10
Radio galaxy	2	10
Seyfert galaxy	1	5
Active galaxy of uncertain type	0	257
Normal galaxy (or part)	2	4
Starburst galaxy	0	4
Class uncertain	-	1
Unassociated	-	576
Total	127	1746

Abdo+11 最近は、太陽フレアも検出

フェルミ衛星の全ガンマ線イベントデータは、即時公開されていますので、解析したい人は、すぐに解析できます。

日本フェルミチーム(解析ソフトも含めた各種リンクもあり) http://www-heaf.hepl.hiroshima-u.ac.jp/glast/glast-j.html

フェルミ衛星公開データ http://fermi.gsfc.nasa.gov/ssc/data/

ガンマ線の放射メカニズムについて

基本的に、100MeV以上の高エネルギーに加速された粒子からの放射 (非熱的放射)

<u>制動放射</u>(Bremsstrahlung)

主に、高エネルギー電子と(星間物質などの)陽子の電磁相互作用

<u>逆コンプトン散乱</u> (Inverse Compton Scattering)

低エネルギー光子を高エネルギー電子が散乱して、光子がガンマ線になる。 (CMB, 星の可視光、ダストの赤外線、ジェット中の赤外可視など)

$$\frac{P_{\text{synch}}}{P_{\text{compt}}} = \frac{U_e}{U_{ph}}$$

シンクロトロン放射の情報とともに、電子や磁場の密度を制限できる

陽子と原子核の衝突 <u>πO崩壊</u>

重い粒子の対消滅、重い粒子の崩壊

ダークマター候補の粒子、宇宙残存粒子など ガンマ線ライン、連続成分

低エネルギー光子の衝突によるガンマ線の吸収

 $\gamma + \gamma \rightarrow e^- + e^+$ 長い宇宙空間 ジェット中など放射密度の大きいところ

電子陽電子対消滅の逆過程

 $e^- + e^+ \rightarrow \gamma + \gamma$

反応が起きる条件

 $E_{\gamma}h\nu(1-\cos\theta) \sim 2(m_{\rm e}c^2)^2 = 0.52({\rm MeV})^2$

高エネルギー天体からの典型的な放射

天体の状態(粒子密度、磁場密度、光子密度)によって、 各成分の強度比は変わる

2. 宇宙線関係の成果の概要

超新星残骸、宇宙線直接観測、銀河宇宙線、スターバースト銀河 銀河団、ダークマター

フェルミで多数の超新星残骸(SNR)が検出されてきた。

W44 (年齢 2x10⁴年):宇宙線陽子の証拠

_緑:赤外線4.5 μm

<u>陽子と分子雲との相互作用によるπ0崩壊がもっともらしい</u>

分子雲 n=100cm⁻³, Wp= 6x10⁴⁹erg, We=1x10⁴⁸erg(宇宙線の陽子電子の比に近い) 電子による制動放射の場合: 電波のスペクトルを再現しにくい。

逆コンプトン散乱の場合: 電子の総エネルギーが大きすぎる(~10⁵¹ergs)

SNR爆風の全エネルギーになってしまい、陽子の運動エネルギーがなくなる 陽子の場合、カットオフエネルギーが結構低い(10GeV以上の陽子がいない)?

宇宙線の電子・陽電子の直接測定

宇宙線電子陽電子も測定できる(電荷は地球磁場を利用して区別)。 電子陽電子に対して非常に巨大な検出器→統計の良い測定ができる。

ラインのような構造を強く否定。ただし、1TeV付近でpowerlawから超過した成分がある。
 → 地球近傍の加速源を示唆。
 Powerlaw成分もソフト→ソフトなinjection?

銀河面からのガンマ線放射 宇宙線と星間物質との相互作用

星間物質の情報を用いて、ガンマ線放射の強度と分布から 宇宙線の量と分布をプローブできる。

予想よりも宇宙線は銀河系外側で多い

近傍銀河の宇宙線

LMCをガンマ線で分解

LMC中の宇宙線の密度は?

銀河系の0.2-0.3倍程度

我々の銀河とLMCの星生成率の違いで説明できる(宇宙線の逃げ出しは、あまりない)

SMC, M31を初めてのガンマ線で検出

SMC: 銀河系の15%以下

M31:銀河系の35%程度

近傍のスターバースト銀河からも初めてGeVガンマ線検出

フェルミ衛星の発見の直前に、TeVガンマ線でも両銀河とも検出

星生成率とガンマ線光度の相関

星生成によって宇宙線が生成されて明るくガンマ線で 輝く描像と一致。ただし、おおまかな相関が見つかったばかりで、パルサー の寄与や閉じ込め効率などの議論は今後。

加速粒子からの放射との区別が必要
フェルミによる矮小銀河からのガンマ線の上限値(連続ガンマ線)から得られる DMの断面積の上限値の例

MSSMモデルの場合(100% bb) 各銀河ごとの上限値(95%信頼度) 赤:WMAPによるthermal relic DM量 を用いて各種DMモデルから得られ る値(青は、nonthermalもある場合)

Final Stateがミューオンの場合 宇宙線電子陽電子による制限と比較

最も近傍のUrsa Minor銀河による 制限

3. ガンマ線パルサー、パルサー星雲 (主に、かに星雲)

Chandra X-ray image of Crab

パルサーの周囲の磁気圏の様子

加速領域

Polar cap model

小さい領域

放射機構 強い磁場 曲率放射 逆コンプトン散乱

光子、粒子の相互作用大

高いエネルギーのガンマ線ほど出てきにくくなる。 $E_{cut} = 2 \text{GeV} P^{0.5} B_{12}^{-1} \left(\frac{R}{R_{NS}} \right)^{5/2}$ Outer gap model

EGRET時代

Name	Ρ	au	Ė	F_E	d	L_{HE}	η
	(ms)	$(10^{3} {\rm yr})$	$(10^{36}{ m erg~s^{-1}})$	$^{\rm l}) \; ({\rm erg} \; {\rm cm}^{-2} {\rm s}^{-1})$	(kpc)	(erg s^{-1})	$(E > 1 \mathrm{eV})$
Crab	33	1.3	450	$1.3 imes 10^{-8}$	2.0	$5.0 imes 10^{35}$	0.001
B1509-58	150	1.5	18	$8.8 imes 10^{-10}$	4.4	$1.6 imes 10^{35}$	0.009
Vela	89	11	7.0	$9.9 imes 10^{-9}$	0.5	$2.4 imes 10^{34}$	0.003
B1706-44	102	17	3.4	$1.3 imes10^{-9}$	2.4	$6.9 imes 10^{34}$	0.020
B1951 + 32	40	110	3.7	$4.3 imes 10^{-10}$	2.5	$2.5 imes 10^{34}$	0.007
Geminga	237	340	0.033	$3.9 imes 10^{-9}$	0.16	9.6×10^{32}	0.029
B1055-52	197	530	0.030	$2.9 imes 10^{-10}$	1.5	$6.2 imes 10^{33}$	0.207

Table 6.2. Properties of high-energy pulsars (Thompson et al. 1999)

EGRETが検出したパルサー(7つ)

ガンマ線領域で最も明るい 電波で暗いものがある。 Gemingaなど

フェルミでの進展

数が増えて統計的な性質(種族など) パルサーでの放射領域の解明 パルサー磁気圏のマッピング

多波長スペクトル

Abdo+09

ミリ秒パルサーは、古くて全体の 磁場は弱いが、回転が速いので 光円錐が小さく、そこでの磁場の 強度は若いパルサーと同じくらい

見つかったガンマ線パルサーの太陽 系を中心とした空間分布の図

太陽系近傍のものが特に 見つかっている。 銀河全体では多数いるはず

ガンマ線パルサーの生成率 … 見つかったパルサーの空間密度と年齢から推定 電波で検出されたパルサー $8 \times 10^{-5} kpc^{-3} yr^{-1}$ 銀河全体で50年 電波で検出されてないパルサー $4 \times 10^{-5} kpc^{-3} yr^{-1}$ に1個生成(超新星 ミリ秒パルサー $2 \times 10^{-8} kpc^{-3} yr^{-1}$ 時間をかけて生成 球状星団 47 Tucanae からのガンマ線検出 古い系なので、古い(ミリ秒)パルサーが多数存在していると考えられる

球状星団の中に23個の電波ミリ 秒パルサーが見つかっている

Consistent with Fermi PSF for point source

数10個のパルサーが回転エネルギー損失の10%をガンマ線で 放射しているとすると、観測されるガンマ線光度を説明できる

他にも7個の球状星団がガンマ線で検出された

実際に球状星団からミリ秒パルサーをガンマ線で検出した最初の例 J1823-3021A 球状星団NGC6624

フェルミのガンマ線イメージ

パルサー星雲(Pulsar Wind Nebula)

GeVガンマ線でもフェルミで検出され始めた。 多波長スペクトルが詳しくわかるようになった。 電子のエネルギーや磁場の特定。 TeVガンマ線ほど明るくなさそう。 6個検出、2個の候補

Crabから、最近、TeVガンマ線でパルスが発見された。

Veritas Coll. +11

1日以内の変動 0.0004pc程度の領域 フレア時に1Pe (星雲全体の1/1000、局所的に強い磁場?) が加速 通常の加速メカニズムでは説明が難しい

フレア時に1PeV(10^15eV)の電子 が加速

4. ガンマ線連星

ガンマ線連星(フェルミ衛星以前の観測)

伴星は重い星、コンパクト星は、パルサー?

3つのうち、PSR B1259には、パルサーが見つかっている LS I+6 303には、パルサー風と思われる電波雲あり LS天体2つは、マイクロクエーサーと思われていた(強い電波源)

> パルサー風に伴う高エネルギー電子が 重い星の強い可視光を逆コンプトン散乱

あるいは、パルサー風と重い星からの 星風が衝突して強く加速された粒子の 逆コンプトン散乱あるいはハドロン放射

EGRETでは、位置決定精度が悪くて 完全に同定できなかった。

LS I +61° 303

フェルミのイメージ

位置は連星に一致

軌道周期26.6±0.5日のガンマ線変動を検出 → LS I+61 303に同定

ガンマ線スペクトル

- 両方ともカットオフを持つ→ガンマ線パルサーに似ている。
- 軌道周期に伴うスペクトル変動の原因は不明。

理論モデルと比較する精度良いデータが得られた

近日点(2010年12月)通過時に初めてGeVガンマ線を検出

ガンマ線で初めて見つかったガンマ線連星 1FGL J1018.6-5867

2つの円は、ガンマ線位置の誤差(11カ月、2年)

- フェルミがパルサーを発見
 X線と可視で同定、同期した 変動を検出
- 3. 電波源も同定

マイクロクエーサー

電波ジェットが観測されている。多くは、ブラックホールか中性子星を含む連星 電波と硬X線の相関 X線はジェット起源??

CygX-3もマイクロクエーサーの1つだが、ガンマ線検出は不確定。 CygX-(ブラックホール連星)からは、一度だけTeVガンマ線フレア。

相手の星が軽い時 ジェットからの放射(逆コンプトン散乱)が予想される 実際、電波や可視光でシンクロトロンが見えている 相手の星が重い時 ジェットが星の強い紫外線や星風と激しく相互作用 してガンマ線が発生? CygX-1, CygX-3

CygX-3の位置に検出 (ただし、そばに明るいパル サーがいた)

CygX-3の軌道周期に同期したガンマ線変動→同定

さらに、電波フレアと同期してガンマ線も明るくなった。

2008 Aug

2009 Feb

Eta Carinae (100M. 程度の重い星を含む恒星連星) (Chandra Photo Album)

銀河面では、時々ガンマ線フレアアップする天体がいる

フェルミ衛星は、毎日数時間おきに全天をサーベイ時々、このような天体を発見する。

ただし、相手が何者か同定できない場合が多い。

相手が同定された唯一の例(思わぬ発見)

新星 V407 Cyg

未同定ガンマ線天体

フェルミの検出した630個の天体の約半数が、他波長で未同定のまま 多くは、位置決定精度が悪いため

一部は、位置決定精度が良いにも関わらず見つからない

銀河面に沿った天体

星生成領域に付随するものが多い

超新星残骸と分子雲の衝突?、マイクロクエーサー?

パルサー?

銀河面から離れた天体も多い

他の波長で暗いAGN?、銀河団?

TeV未同定天体もある

多くは、X線観測によりパルサー星風らしいことがわかりつつある

ガンマ線スペクトルが曲がっているもの パルサーあるいはブレーザーに似たもの

71

時間変動を示すもの

ブレーザーに似たもの

5. ガンマ線バースト

GRBの現在の描像(火の玉モデル Fire Ball model)

ガンマ線バーストの現状とフェルミ衛星による研究

残光については、細かいことを除いて外部衝撃波モデルの描像で合う Prompt放射については、最近は、あまり進展がない。

フェルミ衛星によるPrompt放射のガンマ線の詳細な研究が必要

ジェットの力学的エネルギー(バルクローレンツ因子)

放射機構はシンクロトロンで良いのか?(火の玉からの熱放射?) ハードテール(他の放射機構は?)

ハドロンの寄与? 最高エネルギー宇宙線の起源?

EGRETで、発生後4500秒後に検出された18GeVガンマ線は? (GRB940217) 中心エンジンの継続時間は長い?

量子重力効果の制限

promptガンマ線スペクトル

GRB1	Angle from LAT	Duratio n (or class)	# of events > 100 MeV	# of events > 1 GeV	Delayed HE onset	Long-lived HE emission	Extra spectral comp.	Highest photon Energy	Redshift
080825C	~ 60°	long	~ 10	0	?	-	X	~ 600 MeV	
080916C	49°	long	145	14	-	1	?	~ 13.2 GeV	~ 4.35
081024B	21°	short	~ 10	2	√	-	?	3 GeV	
081215A	~ 86°	long	_	—	—	_		_	
090217	~ 34°	long	~ 10	0	X	X	X	~ 1 GeV	
090323	~ 55°	long	~ 20	> 0	?	-	?		3.57
090328	~ 64°	long	~ 20	> 0	?	1	?		0.736
090510	~ 14°	short	> 150	> 20	1	-	4	~ 31 GeV	0.903
090626	~ 15°	long	~ 20	> 0	?	-	?		
090902B	51°	long	> 200	> 30	-	-	-	~ 33 GeV	1.822
090926	~ 52°	long	> 150	> 50	-	-	-	~ 20 GeV	2.1062
091003A	~ 13°	long	~ 20	> 0	?	?	?		0.8969
091031	~ 22°	long	~ 20	> 0	?	?	?	~ 1.2 GeV	
100116A	~ 29°	long	~ 10	3	?	?	?	~ 2.2 GeV	
100225A	~60	long	~10	1	?	?		~9.5 GeV	
100325A	~10	long	~5	0	?	?	?	800 MeV	
100414A	~70	long	~20	> 0	?	?	?	4 GeV	

Limits on Lorentz Invariance Violation (LIV) 量子重力効果

ある種の量子重力理論は相対論のローレンツ不変を破る:

光速度はエネルギー依存性をもつ

(真空の量子場と光子が相互作用。屈折率が変化するようなもの)

$$c^{2} p_{ph}^{2} = E_{ph}^{2} \left[1 + \frac{E_{ph}}{M_{QG,1}c^{2}} + \left(\frac{E_{ph}}{M_{QG,2}c^{2}}\right)^{2} + \dots \right] , v_{ph} = \frac{\partial E_{ph}}{\partial p_{ph}} \approx c \left[1 - \frac{1 + n}{2} \left(\frac{E_{ph}}{M_{QG,n}c^{2}}\right)^{n} \right]$$

エネルギーの高いγ線ほど、遅れてやってくる

$$\Delta t = \frac{(1+n)}{2H_0} \frac{E_h^n - E_l^n}{(M_{\text{QG},n}c^2)^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} dz'$$

Ellis et al. (2003); Jacob and Piran (2008)

n = 1,2 for linear and quadratic Lorentz invariance violation, respectively

フェルミ衛星による制限

	GRB	Duration (or class)	# of events > 0.1 GeV	# of events > 1 GeV	Method	Lower Limit on M _{QG,1} /M _{Planck}	Valid for s _n =	Highest photon energy	Redshift
	080916C	long	145	14	1	0.11	1	~ 13 GeV	~ 4.35
(1	1.2, 3.4, 5.1, 10	1		
	090510	short	> 150	> 20	2	102	±1	~ 31 GeV	0.903
					3	1.2	±1		
Γ	090902B	long	> 200	> 30	1	0.068	1	~ 33 GeV	1.822
	090926A	long	> 150	> 50	1,3	0.066, 0.082	1, 1	~ 20 GeV	2.106

 $M_{QG,1} > 1.60 \times 10^{19} \text{ GeV/c}^2$

今までのあらゆる観測で最も強い制限

ある種の量子重力理論を棄却する

Band functionに対する高エネルギー超過成分の検出

GRB 090902B (long)

GRB 090926A (long)

発生5秒後から、見えるようになった

 γ γ 吸収によるカットオフだとすると、
 バルクローレンツ因子が決まる

 Г=720±76(時間変動 0.15sの場合)

より複雑なモデルの場合には、Γは 200くらいにもなりうる

6. 活動銀河核

ブレーザー、新種のガンマ線AGN 背景放射、遠方天体

BLAZAR

QSOと同じく、最初は周囲の銀河が見えないくらい中心が明るい

時間変動が非常に激しい 強い偏光(電波、可視光) シンクロトロン放射

ジェットをほぼ正面から見ている

BL Lac型 可視光スペクトルで輝線が見えにくい 近傍で、光度は小さめ FSRQ型(OVV-QSO,Radio-loud QSO) 遠方で、光度は大きめ

EGRETで強いガンマ線天体であることがわかった。 その後、TeVガンマ線で主にBL lac型が多く検出されてきた。 **BLAZAR** Sequence

速い時間変動で非常に明るい高エネルギーガンマ線が放射されていることから、

Compton Catastropheを回避するため、相対論的ビーミング効果の必要性 ビーミングがないと、ガンマ線密度が大きすぎて低エネルギー光子と衝 突して、ガンマ線が外に出てこれない

γ=10^6 (1TeV)ほどの高エネルギー電子を必要とする。 **Jetの**Γ(バルクローレンツ因子)は、せいぜい、10

Jetの中で、高エネルギー電子が加速されている。

ジェット中にBlogと呼ばれる塊が違う速度で走っている。 後方の速いものが追いついて衝突。衝撃波形成

BLAZARのガンマ線放射モデル

Leptonic model 電子陽電子が放射源 Hadronic model 電子陽子が放射源(陽子からの2次粒子生成が放射)

FSRQ

フェルミで期待されること

EGRETではフレアアップした時だけが見えていたが、フェルミでは暗い時期も 連続的に観測可能に。 静穏期の性質やフレア時の特有性質は?

多くのブレーザーをガンマ線で連続的にモニターできるので、それに備えて他の波長での連続モニター体制が整備され、多波長連携モニター観測の質と量が向上の波長スペクトル変動の理解、電波可視偏光との関係

日本でも、広島大学かなた望遠鏡(可視赤外偏光)、 東工大MITSuME望遠鏡、X線衛星すざく が活躍

TeVブレーザーに加えて、FSRQ型の時間変動を追うことが可能となる

ガンマ線放射機構は? Leptonic or hadronic?

ガンマ線放射領域、および、その様子の解明 (他の波長と同じか?)

多数のブレーザーを遠方まで検出→ブレーザーの光度関数が得られる (ジェットの宇宙論的進化、巨大ブラックホール進化との関係)

新しい種族の天体は?

The 2year LAT AGN catalog (2LAC)

- 24 month data set
- 1079 TS>25, |b|>1
- 668 AGNs (P_{assoc}> +186 candidates

- (257 of unknov
- ~10 Radio gal:

indexが0.2ほど小さくなる

FSRQ型やLSP-BL Lac型ではスペクトルにGeV付近で折れ曲がり

F_v (erg cm²s⁻¹)

10^{-1'}

- ほとんどの天体で見られる
- Broken power-lawで、よく合う
- ・折れ曲がりのべき指数の変化 $\Delta\Gamma$ ~1.0 → 放射冷却 (ΔΓ=0.5)で説明できない
- ・可能性として、

Ebreak

- 粒子エネルギー分布の折 れ曲がり(加速機構?)
- Klein-Nishina effect
- vy absorption effect

FSRQ

LSP-BLLac

AO 0235+164

10 (GeV)

3C 454.3

FSRQ 4C+21.35: ガンマ線スペクトルの折れ曲がり

→ 折れ曲がり小

Ljet=Lγ/Γ²=1E48/(15)²~Ldisk=1E45erg/s 限界光度に達している

PKS 2155–304: Light Curves and Correlated Variability

複雑な時間変動

- X-ray とTeVが相関していない
- TeVではスペクトル変化小($\Delta\Gamma_{VHE} < 0.2$)
- X線ではスペクトル変化大 (ΔΓ_X ~ 0.5) → 放射冷却
 - ⇒ X線を作る高エネルギー電子の方が 冷却されやすい
- 可視とTeVが相関(放射電子のエネルギ ーは異なるはず)
- 可視とGeVが相関なし(放射電子のエネ ルギーが近いはず)

Multi-zone SSCモデルが要求される

他の多くの天体でも同じ ジェットの中は複数の領域が

ジェットの中は複数の領域 輝いている

BLRの外側で、小さい領域が光っている

Recollimation

Marscher+80, Bramberg&Levinson+09

Reconfinement shocks Nalewajko&Sikora+09, Stawarz+06

Compact region embedded

Giannios+09, Marscher&Jorstad+10, Ghisellini&Tavecchio+08

フレアに伴うブレーザーの可視偏光の回転は、最近検出され始めた

(広島大学かなた望遠鏡でも、いくつか) ジェットの構造に対して制限を与える

<u>1. helical magnetic field model</u> (Marscher et al. 2008)

Moving emission feature Helical magnetic field Streamline Conical standing shock Acceleration and collimation zone----- Millimetre-wave core Turbulent plasma Accretion disk

Distance from black hole

2. bend jet model

Marscher+08,10; Sasada+09

ガンマ線放射領域の位置は:

 $\Delta r_{\text{event}} \sim 10^{19} \left(\Delta t_{\text{event}} / 20 \, \text{days} \right) (\Gamma_{\text{jet}} / 15)^2 \, \text{cm}$. ~10⁵ シュワルツシルド半径

3. "flow-through" (jet wobbling) scenario ジェットのビーミング効果が入らないので、ゆっくりと変動 放射領域の位置: r_{event} ~ cDt_{event} ~ 10³ シュワルツシ ルド半径
シナリオ1と3は、常に同じ方向の偏光面回転を予測するが、3C279では過去に逆 方向の回転が観測されている(Larionov+08).3C454.3でも観測されている (Sasada+10)。 新しい部類のガンマ線AGN:

Narrow-Line Radio-loud Seyfert galaxy (NLSy1)

PMN J0948+0022 ガンマ線光度~10⁴⁸ erg s⁻¹

- ・小さいBH質量 (10^{6.7}-10^{8.2} M.) でとても高い降着率 (~90% Eddington) (Blazarや電波銀河は、10⁷-10¹⁰M.)
- ・Blazarや電波銀河と異なり、渦巻銀河に含まれる
- ・電波の構造は非常にコンパクト(ジェットやローブが不明)

降着円盤とジェットの関係を探るため に重要な天体

新しい部類のガンマ線AGN:電波銀河

EGRET: Cen A と2, 3の電波銀河からのGeVガンマ線放射の兆候 3EG catalog: Hartman et al. (1999) 他に、3C111 and NGC6251? see also Sreekumar et al. (1999)

2000年代に入り、M87からTeVガンマ線が検出された

ジェットをいろいろな角度から見ることにより、ジェットの構造の情報を得られる(Blazarはビーミングで、ジェット中心部のみ見える)

フェルミでは、数か月で代表的な3つの電波銀河が検出された (これら3つは、同時期にTeVでも検出された) 2年間では、約10個が検出。

) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5

(注)ローフからの放射はビーミングしていない。カンマ線は、CMBを逆コンフトン たもので説明できる。

ジェットの根元からTeV電子が出ているとすると、300kpcも走る前に、弱ってしまう。 ↓ 巨大な電波ローブ自体で加速されている(乱流フェルミ2次加速?)

我々の銀河にもローブに似た大きな泡がガンマ線で光っていた

Su et al. 2010 ROSATでもリング構造が見え ていた

WMAPでも光っているので、電 波ローブと言っても良い(Cen A lobe の1/50)

ガンマ線スペクトル、べき2くらい (通常の銀河面放射よりもハー ド):光度は銀河面全体の数%

X線から熱エネルギーは10⁵⁴⁻⁵⁵ergで、音速<1000km/sより、 10⁷年前に発生 (過去の激しいAGN活動かス ターバースト活動?) バブル中でフェルミ2次加速によ り10¹⁵eVの宇宙線加速? (Cheng+11)

ガンマ線背景放射と遠方天体

ガンマ線背景放射の精度良い測定

既知の遠方天体の重ね合わせ or 未知天体? or ダークマター? ガンマ線天体のlogN-logSの初めての導出

背景放射への寄与を見積もれる

背景放射の解析 (200 MeV - 100 GeV)

ガンマ線背景放射への各種ガンマ線天体の寄与の見積もり(現状)

Narumoto&TotaniO6, DermerO7, Bhattacharya+O9, Inoue&TotaniO9, Fields+10, Makiya+10, Inoue+11, Abazajian+10, Ghirlanda+11, Stecker&Venters11, Malyshev&Hogg11

銀河間磁場と遠方AGNのガンマ線の相互作用 Ahalonian+94

銀河間磁場:銀河や星の磁場の種、宇宙創成時の初期生成、あるいは、 初期宇宙でのプラズマ運動で生成、検出は皆無

AGNからのTeV光子は、e+e-になり、それらが散乱を通して、低エネルギーの ガンマ線となり、広がっていく。その広がりが、フェルミのPSFよりも小さい場合 には、AGNのスペクトルに寄与してしまう。

$$\Rightarrow \mathbf{B}_{\mathrm{IGMF}} > 10^{-15} \mathrm{G}$$

(Neronov & Vovk 2010; Tavecchio et al. 2010)

最後に

フェルミ衛星のデータは、即時公開なので、解析したい人は、すぐに 解析できます。

これまで、見えてこなかった天体・放射、あるいはできなかった観測 手法を、自由なアイデアで試せます。

電波からX線までの観測で、フェルミ天体について面白いサイエン ステーマを見つけてください。

次期地上TeVガンマ線望遠鏡CTAにつながるサイエンスの良い材 料を見つけてください。