銀河系中心領域の南側に伸びる 巨大なプラズマ放射の観測 中島真也(京都大学)

アブストラクト

X線天文衛星「すざく」による銀河系中心領域のマッピング観測から、I=0°、b=-1.5°の付近に広がる 巨大な軟X線放射(0.5-2.0 keV)を発見した。この領域のスペクトルからは高階電離した様々な重元素の 輝線を検出し、光学的に薄いプラズマの放射と考えられる。ところが、他波長の観測ではこの方向に超新 星残骸や巨大な星生成領域の存在は報告されておらず、一般的な高温プラズマ生成のシナリオでは説明で きない特異な存在であることが分かった。その起源に迫るためには、すざく衛星の高品質データを生かし たプラズマの熱的性質の解析が必須である。まず始めに、電離平衡状態のプラズマモデルでは観測された スペクトルを説明できず、2-4 keV付近で再結合連続放射(RRC)と思われる構造が残った。これはプラズマ が平衡状態よりも電離が進んだ状態、すなわち「過電離」であることを示唆している。実際、過電離状態 のプラズマモデルを適用したところ観測データをおおよそ再現でき、電子温度は0.5 keV、初期の電離温度 は10 keV、緩和時間(nt)は6x10¹² s/cm³と求まった。さらに領域を分割して電離度の場所依存性を調べた ところ、南側に行くほど緩和時間が短く、電離度が大きい状態にあることが明らかになった。また、星間 吸収量から、銀河系中心よりもこのプラズマは手前側に位置すると考えられる。

バックグラウンドのモデル化

周辺スペクトルの空間分布をモデル化することで、ソースの 位置でのバックグラウンド強度を正確に見積もる。

- •2 keV に Six Ka 輝線の残差。
- 2.7 3.0 keV および 3.0 4.0 keV に再結合連続放射 (RRC) 状の残差。
 - → 平衡状態よりも電離が進んでいることを示唆。
- 0.8 keV と 1.2 keV に盛り上がった構造。
 - → FeのL輝線がモデルで不足していることによる。

過電離モデルのパラメータ					
N _H	4.89 x 10 ²¹ /cm ²				
kT _{init}	10 keV (fix)				
kTe	0.501 keV				
n _e t	6.40 x 10 ¹¹ s/cm ³				
O, Ne	0.196 solar				
Mg	0.407 solar				
Si	0.414 solar				
S	0.399 solar				
Ar, Ca	0.668 solar				
Fe, Ni	0.074 solar				

空間依存性

全領域のフィットではまだ残差が大きい。各領域で吸収量と緩和時間を独立、 その他の パラメータは同じにしてにして同時フィット。

	Src1	Src2	Src3	Src4	Src5	
N _H (/cm ²)	9.55 x 10 ²¹	7.55 x 10 ²¹	6.17 x 10 ²¹	5.99 x 10 ²¹	2.08 x 10 ²¹	
kT _{init} (keV)			10 keV (fix)			
$kT_e(keV)$			0.581 keV			
n _e t (s/cm³)	13.3 x 10 ¹¹	9.08 x 10 ¹¹	7.61 x 10 ¹¹	8.10 x 10 ¹¹	5.92 x 10 ¹¹	
O, Ne (solar)			0.504			
Mg (solar)	0.779					
Si (solar)	0.569					
S (solar)	0.598					
Ar, Ca (solar)	1.32					
Fe, Ni (solar)			0.237			

吸収量は星間吸収Aと同じか、より小さい

この天体は GC よりも手前側に存在。具体的な距離の算出は、今後HIガス・分子雲の 観測を元に行う。

吸収量の 銀緯依存性が大きい。 天体が奥行き方向にも大きく広がって いる可能性を示唆。

この天体の方向に、巨大な星生成領域や、電波での超 新星残骸の報告は無い。一方で、プラズマは過電離と いう特異な状態にある。

起源がはっきりとしないが、特殊な周辺環境にある ことは間違いない。

南に行くほど緩和時間が短い = 電離が進んだ状態

電離を起こすような現象が北側から順次起こったこ とを示唆。