

SXDF の z = 5.7 原始銀河団 および銀河の性質

東京大学 天文学専攻 D1 篠木 新吾

2012/08/04 2012年度 第42回天文・天体物理若手 夏の学校 @福井県東尋坊温泉三国観光ホテル

Abstract

- Introduction~Keywords
- sample selection
- observation
- analysis & results

■ Future Works

Abstract

Subaru/XMM-Newton Deep Survey

- ✓ NB816 imaging with Subaru/Sprime-Cam
 - discovery of z = 5.7 LSS including two protoclusters
 - Ouchi et al. 2005
 - \downarrow
- Our works
 - ✓ follow-up spectroscopy with Keck/DEIMOS (PI: Ouchi)
 - \checkmark estimate of the masses of two protoclusters \downarrow
- Future works
 - \checkmark investigation of the properties of these galaxies
 - ✓ understanding the high-redshift universe

Abstract Introduction~Keywords sample selection observation analysis & results

■ Future Works

SXDS

high-z galaxies

順位	名前	座標	赤方偏移	億光年	論文	出版年月
1	SXDF-NB1006-2	J021856.5-051958.9	7.215	129.1	澁谷他	2012.6
2	GN-108036	in GOODS NORTH field	7.213	129.1	小野他	2012.1
3	BDF-3299	J222812.3-0350959.4	7.109	129.0	Vanzella 他	2010.12
4	A1703_zD6	J131501.0 + 515004	7.045	128.9	Schenker 他	2012.1
5	BDF-521	J222703.1-350707.7	7.008	128.9	Vanzella 他	2010.12
6	G2-1408	J132357.1+272448	6.972	128.8	Fontana 他	2010.12
7	IOK-1	J132359.8+272456	6.964	128.8	家他	2006.9
8	HUDF09_1596	J033303.8-275120	6.905	128.7	Schenker 他	2012.1
9	SDF46975	in Subaru Deep field	6.844	128.6	小野他	2012.1
10	NTTDF-6345	J120536.9-074522.3	6.701	128.4	Pentericci 他	2011.12

最も違い銀河ペストテン (2012年6月4日)©NAOJ

high-z clusters

protoclusters

	redshift	overdensity	region	paper
1	6.01	~6 <i>0</i>	SDF	Toshikawa et al. 2012
2	5.7	4.8σ	SXDF	Ouchi et al. 2005

mature clusters (present-day-like clusters)

	redshift	overdensity	region	paper
1	2.07	~20 <i>o</i>	Daddi Field	Gobat et al. 2011

clusters

mature clusters (present-day clusters)

- ✓ ~10¹⁴ M_☉, ~5Mpc
- \checkmark crossing time ~ 10¹⁰ yr (~ age of the universe)
- ✓ Gobat+2011: z=2.07 "the most distant, mature cluster"
- X-ray emission from high-temperature plasma (intergalactic medium)

• "The unambiguous signature of an evolved cluster is the X-ray emission from the ICM, as it implies a deep and established potential well." *ICM = intergalactic medium of clusters

- protoclusters: overdense regions in the early universe
 - ✓ ≦10¹⁴ M_☉, ~5Mpc
 - ✓ no X-ray emission
 - ✓ physically immature system

- Abstract
 Introduction~Keywords
 sample selection
 observation
 analysis
 results
- Future Works

selection of LAEs

LAEs = high-redshift galaxies selected with 2 broadband and 1 narrowband filters

NB816 imaging

- Abstract
- Introduction~Keywords
- sample selection
- observation
- analysis & results
- Future Works

spectroscopy observations

	December 2003	February 2010
telescope/instrument	Subar/FOCAS	Keck/DEIMOS
mirror diameter (area)	8.2m (1)	9.96m(1.48)
instrument FoV	6'(circular) ~ 28 arcmin ²	16.7*5.0 ~ 81.5 arcmin ²
spectral range	4900 – 9100 Å	5980 – 9820 Å
grating	300 lines/mm	830 lines/mm
resolution	$\lambda/\Delta\lambda \simeq 1000$	λ/Δλ ~ 2500
distinct [OII] doublet from Ly α	cannot	can

black: 174 z=5.7 LAE cadidates $_{20}$ cyan: 17 FOCAS objects red: 22 DEIMOS objects (sum = 30 objects) \downarrow 5 20 z = 5.7 LAEs 0

Abstract
Introduction~Keywords
sample selection
observation
analysis & results

■ Future Works

3d map

overdensity

```
    number density
    SXDF: (2.9~4.0)*10<sup>-4</sup> Mpc<sup>-3</sup>
    region A: (5.3~7.1)*10<sup>-3</sup> Mpc<sup>-3</sup>
    region B: 1.4*10<sup>-2</sup> Mpc<sup>-3</sup>
    overdensity = region A(or B)/SXDF - 1
    region A: 12~20
    region B: 34~47
```

```
✓ assume size = 1Mpc (physical units)

→ overdensity = 47 \sim 85(clump A), 47 \sim 65(clump B)
```

```
    compare virialized systems (present-day clusters)
    present-day cluster: 100~200
```

mass

assumption \checkmark the protoclusters are virialized: $M = \frac{3\sigma^2 r}{C}$

estimate masses

expectation of the virialied systems with the masses

- ✓ based on ∧ CDM model (Mo & White 2002)
 - < 3 clusters with M($\geq 6.2^{*}10^{12} M_{\odot}$)
 - · < 0.001 clusters with M(\ge 3.8*10¹³ M_{\odot})

Abstract

- Introduction~Keywords
- sample selection
- observation
- analysis & results

Future Works

properties of high-z galaxies

background

- ✓ redshift vs properties
 - \cdot luminosity function (LF), EW
 - surface density, galaxy-dark matter bias, DMH masses z = 3.1, 3.7, 5.7, 6.6 (Ouchi+2008, 2010)
 - cosmic varinace
 - z = 4.79, 4.86 (Shimasaku+2004)
- environment vs properties
 - \cdot age, SF time scale, SFR, dust extinction
 - z = 2.15 (Tanaka+2010)
 - · EW(Ly α)

z = 3.1 (Kuiper+2012)

• L(UV), L(Ly α), EW(Ly α)_{rest}, FWHM(Ly α) z = 6.01 (Toshikawa+2012)

Future Works

properties of z = 5.7 LAEs in/around protoclusters
 environment vs properties @ z = 5.7

evolution of environmental dependence of galaxies
 redshift vs environment vs properties
 z = 0 ~ 5.7 ~ 6.01, 7, 8, ...

■ general properties of high-redshift galaxies

- ✓ formation of protoclusters
- ✓ evolution of LSS