近傍渦巻銀河星間ガスHIガス—H₂ガス相転移

田中 亜矢子,中西 裕之

鹿児島大学大学院 理工学研究科 物理·宇宙専攻

概要

近傍渦巻銀河 10 天体について、観測データから直接求めた分子比(それは、全ガス密度に対する H₂ ガス密度の比) f_{mol} と Elmegreen (1993)[3] で提唱された ISM 相転移論を基にしたモデルで計算した f_{mol} とを radial distribution で比 較した結果を報告する。Elmegreen (1993) によると f_{mol} は星間圧力 P、UV 放射量 U、金属量 Z に大きく依存するこ とが知られている。しかし、これら依存 parameter の導出方法が先行研究で異なる上に、依存 parameter すべてを観測 データから求めた研究は今まで行われていなかった。そこで必要な観測データ 5 つ (¹²CO (J=1-0) 輝線、HI 輝線、H α 輝線、K_s-band、金属量) すべてが揃った 10 天体に対して観測と理論モデルを比較するとともに、依存 parameter の決 定も行った。その結果 f_{mol} がより良く合うためには、(1) 星間圧力は星密度を考慮する、(2) X_{CO} は 1 つの銀河中で一定 値にすると良いことがわかった。さらに両者を合わせるには UV 放射量を調節するほうが良いことがわかった。

1 導入

1.1 背景

銀河の主な構成要素の一つとされる星間ガスは組 成比の70%が水素である。星形成率とも関係がある 水素ガスを知ることは銀河を知る上で有効な手段で あると言える。

以降 HI ガスと H₂ ガスの分布を分かりやすく示す ために、 f_{mol} (HI ガス+H₂ ガス密度に対する水素分 子ガス密度の比)を次のように定義して使用する。

$$f_{\rm mol} = \frac{\Sigma_{\rm H_2}}{\Sigma_{\rm H_2} + \Sigma_{\rm HI}} = \frac{\Sigma_{\rm H_2}}{\Sigma_{\rm tot}} \tag{1}$$

先行研究から f_{mol} の特徴として、(1) 銀河の半径 増加に伴い、値が急激に減少すること [5]、(2) f_{mol} の 値が銀河の環境変数 (星間圧力 P、UV 放射量 U、 金属量 Z) に依存すること [3] が分かっている。

しかし大きく 2 つの問題点がある。(1) f_{mol} の値を 決める parameter の導出方法が定まっていない (特に 星間圧力とガス密度の関係と CO-to-H₂ conversion factor X_{CO}) (2) f_{mol} の値を左右する parameter はす べて観測データから求めることができるが、全観測 データを用いて f_{mol} を研究した前例はない。

2 データの取得

今回の研究では1つの銀河に対して¹²CO (J=1-0) 輝線、HI 輝線、K_s-band、H α 輝線、金属量データの 5 つすべてが揃っている必要がある。これらのデー タは主にアーカイブから集め、それぞれ野辺山 45m 電波望遠鏡の「NRO CO Atlas」と BIMA、VLA の「THINGS」、「2MASS」、「SINGS」と Hoopes (2001)[4] から取得した。金属量のデータは Zaritsky (1994)[11] と Moustakas (2010)[6] の論文から値を 引用した。その結果 10 天体分の近傍渦巻銀河のデー タを集めることができた。使用した銀河の詳細は表 1 に示す。

3 方法

3.1 2つの f_{mol} を得る

まず ¹²CO (J=1-0) 輝線、HI 輝線データから H₂ ガス密度 Σ_{H_2} 、HI ガス密度 Σ_{HI} をそれぞれ求め、観 測データから直接求めた f_{mol} を得た。

次に、¹²CO (J=1-0) 輝線、HI 輝線、K_s-band、 H α 輝線、金属量データ 5 つから f_{mol} に依存する paramter $P(\Sigma_{H_2}, \Sigma_{HI}, \Sigma_{star}), U, Zを得た。そし$ $て理論的な <math>f_{mol}$ を求めるために Elmegreen (1993)[3] の ISM 相転移論を基にした理論モデルプログラムで 計算した。

3.2 比較事項 I

まず問題の1つである依存 parameter の決定を行 いたい。1つ目は星間圧力とガス密度の関係につい て、先行研究より3通り考えられる、 $P \propto \Sigma_{tot}^2[5]$ 、 $P \propto \Sigma_{tot}^2[3][7]$ 、 $P \propto \sqrt{\Sigma_{star}}\Sigma_{tot}[2]$ 。2つ目は COto-H₂ conversion factor X_{CO} について、先行研究よ り大きく2通り考えられる、1.0-3.0×10²⁰ cm⁻²(K km s⁻¹)⁻¹、金属量に依存するもの [1][8]。

4.1 結果 I - 依存 parameter の決定

4.1.1 星間圧力とガス密度の関係

NGC628 と NGC5457 において得られた結果を図 1 に示す。図の1つ1つは銀河中心からの距離(横 軸)、 f_{mol} (縦軸)を表す。点は観測データから直接求 めた f_{mol} 、線は理論モデルから求めた f_{mol} 。左列が $P \propto \Sigma_{tot}$ 、中央が $P \propto \Sigma_{tot}^2$ 、右列が $P \propto \sqrt{\Sigma_{star}}\Sigma_{tot}$ を表す。 f_{mol} を radial distribution で比較すると、星 間圧力は $P \propto \sqrt{\Sigma_{star}}\Sigma_{tot}$ つまり星密度を考慮する と観測的な f_{mol} と理論的な f_{mol} がよく合うことがわ かった。他の天体についても同様の傾向が見られた。

4.1.2 CO-to-H₂ conversion factor $X_{\rm CO}$

 X_{CO} の比較は目視での確認が難しかったため、両 者の残差をとった。得られた結果は図2に示す。図 中の数字4はArimoto (1996)の式で金属量を銀河半 径に依存させた X_{CO} 、5と6はArimoto (1996)[1]と Narayanan (2012)[8]の式をそれぞれ使い、金属量を 各銀河での平均値をとった X_{CO} 。この図から X_{CO} は1つの天体内で一定値をとることがよいと分かっ た。しかし残差が小さな値をとるときの X_{CO} は銀河 によって異なった。そこでSchmidt Lawを考慮し、 $X_{CO} = 1.0 \times 10^{20} \text{ cm}^{-2}$ (K km s⁻¹)⁻¹を採用した。

4.2 議論 I

前述したように依存 parameter の決定はできたが、 これだけでは両者の f_{mol} は完全には一致しなかった。 そこでより一致させるために UV 放射量を調節する factor γ を導入し、 f_{mol} 両者の誤差が最小になると ころで scaling した。 γ と UV 放射量の関係は、

 $U_{\text{corrected}} = \gamma \ U_{\text{original}} \quad (0.1 \le \gamma \le 1.5)$ (2)

4.3 結果 II - γ の導入

NGC2903、3184、4254、5194について scaling facotor γ を導入した結果を図 3 に示す。観測的 f_{mol} と理論的 f_{mol} がきれいに一致し他の 6 天体でも同様 の結果が得られている。

4.4 議論 II

ここで大きな疑問として、「UV 放射量を調節する factor γ を導入する物理的な意味は何か」が挙げら れる。我々は γ は H α データの diffuse component を取り出すための diffuse fraction f_{DIG} ではないか と考えている。図 4(a) は銀河半径に対して各天体 の γ をプロットした図である。図中の緑線は Thilker (2005)[10] で M33 について *f*_{DIG} を求めたものであ る。今回解析した 10 天体中 6 天体が同じような傾向 を示していることが図からわかる。

図4(b)は、銀河ごとに f_{DIG} を求めた Thilker(2002)[9] と解析天体が一致した4天体について、Thilker (2002)[9] で求めた f_{DIG} (縦軸)、本研究で求めた γ (横軸)を プロットした図である。相関があるように見える。

5 結論

観測的 f_{mol} と理論的 f_{mol} がより良く合うために は、(1) 星間圧力は星密度を考慮する、(2) X_{CO} は1つ の銀河中で一定値にする ($X_{CO} = 1.0 \times 10^{20}$ cm⁻²(K km s⁻¹)⁻¹) と良いことがわかった。さらに両者を合 わせるには UV 放射量を調節するほうが良く、調節す るための factor γ は H α データの diffuse component のみを取り出すための f_{DIG} である可能性が高い。

参考文献

- Arimoto, N., Sofue, Y., & Tsujimoto, T. 1996, PASJ, 48, 275
- [2] Blitz, L., Rosolowsky, E. 2004, ApJ, 612, L29
- [3] Elmegreen, B. G. 1993, ApJ, 411, 170
- [4] Hoopes, C. G., Walterbos, R. A. M., & Bothun, G. D. 2001, ApJ, 559, 878
- [5] Honma, M., Sofue, Y., & Arimoto, N. 1995, A&A, 304, 1
- [6] Moustakas, J., Kennicutt, R. C. Jr., Tremontt C. A. 2010, ApJS, 190, 233
- [7] Nakanishi, H., Kuno, N., & Sofue, Y. 2006, ApJ, 651, 804
- [8] Narayanan, D., Krumholz, M. R., Ostriker, E.
 C., & Hernquist, L. 2012, MNRAS, 421, 3127
- [9] Thilker, D. A., Walterbos, R. A. M., Braun, R., & Hoopes, C. G. 2001, AJ, 124, 3118
- [10] Thilker, D. A., Hoopes, C. G., & Bianchi, L. 2005, ApJ, 619, L67
- [11] Zaritsky, D., Kennicutt, R. C. Jr., Huchra., J.
 P. 1994, ApJ, 420, 87

表 1 properties of sample galaxies										
Name	R.A.	Decl.	M_type	V_{sys}	D	P.A.	i			
	(J=2000.0)	(J=2000.0)	(RC3)	$[\text{km s}^{-1}]$	[Mpc]	[deg]	[deg]			
NGC628	01 ^h 36 ^m 41. ^s 7	+15°46′59.″0	SA(s)c	657	7.3	25	24			
NGC2903	09 ^h 32 ^m 10. ^s 11	+21°30′03.″0	SAB(rs)bc	549	6.3	25	67			
NGC3184	10 ^h 18 ^m 16. ^s 98	+41°25′27.″8	SAB(rs)cd	594	8.7	6	21			
NGC3521	11 ^h 05 ^m 48. ^s 88	-00°02′15.″04	SAB(rs)bc	792	7.2	161	63			
NGC4254	12 ^h 18 ^m 49. ^s 61	+14°24′59.″6	SA(s)c	2386	16.1	66	42			
NGC5055	13 ^h 15 ^m 49. ^s 36	+42°01′45.″57	SA(rs)bc	503	7.2	98	61			
NGC5194	13 ^h 29 ^m 52. ^s 7	+47°11′42.″60	SA(s)bc	465	7.7	-4	20			
NGC5236	13 ^h 37 ^m 00. ^s 48	—29°51′56.″48	SAB(s)c	514	4.5	45	24			
NGC5457	14 ^h 03 ^m 12. ^s 48	+54°20′55.″3	SAB(rs)cd	255	7.2	42	18			
NGC6946	20 ^h 34 ^m 52. ^s 34	+60°09′14.″21	SAB(rs)cd	60	5.5	242	40			

	Xco (Eguation)	NGC number									
		628	2903	3184	3521	4254	5055	5194	5236	5457	6946
Z		Mous	Zari	Mous	Mous	Mous	Mous	Mous	Zari	Zari	Mous
1	1e+20	0.245	0.0721	0.0416	0.112	0.0744	0.0492	0.745	0.736	0.568	0.163
2	2e+20	0.280	0.0889	0.0581	0.158	0.105	0.0555	0.753	0.773	0.673	0.157
3	3e+20	0.286	0.258	0.0689	0.178	0.110	0.0627	0.172	0.180	0.285	0.134
4	Arimoto	0.294	0.273	0.0554	0.202	0.107	0.0535	0.203	0.229	0.299	0.160
5	Arimoto	0.284	0.243	0.0547	0.174	0.102	0.0539	0.190	0.222	0.268	0.156
6	Narayanan	0.281	0.238	0.0695	0.172	0.102	0.0547	0.304	0.228	0.270	0.167

図 2 観測的 f_{mol} と理論的 f_{mol} で残差をとった図。

図 3 4 天体における γ を導入したときの観測的な f_{mol} (点) と理論的な f_{mol} (線)

図 4 (a) γ の radial distribution と M33 の f_{DIG} Thilker (2005)[10]、(b) 本研究で求めた γ と Thilker (2002)[9] で求め られた f_{DIG} の相関図