連星中性子星合体からの重力波・電磁波放射

仏坂健太

京都大学理学研究科

概 要

本講演はでは、最近の数値相対論による連星合体シミュレーション、Hotokezaka et al. [1]をもとに連星中性子星合体からの質量放出について議論する。今回の計算結果により、典型的な連星中性子星合体では、 $10^{-3}M_{\odot}$ 程度の質量が比較的当方的に、光速の数 10パーセント程度の速度で放出されることがわかった。このような質量放出は、将来の突発天体サーベイの望遠鏡や電波干渉計で観測可能な電磁波を放射することが予想でき、重力波天文学を実現するために非常に有益な情報を与えることが期待される。

1 Introduction

連星中性子星合体からの重力波は、次世代重力波干渉計、KAGRA、Advanced LIGO、Advnced VIRGO などのメインターゲットの1つである [2]。これらの干渉計によって、重力波の初検出が期待されていて、連星の 進化計算によると、連星中性子星合体からの重力波が年間数回ほど検出さ れると考えられている [3]。

連星中性子星が合体する際には、重力波だけでなく電磁波の放射が付随すると考えられている。これらの電磁波は、連星合体の母銀河の特定な ど、重力波天文学を進める上で重要な役割を果たす。Li and Paczynski [4] では、連星中性子星が合体する際に $10^{-2}M_{\odot}$ ほどの質量が放出され、放 出された物質の中で起こる核反応が起こり、電磁波を放出すると予想して いる。これは、超新星爆発が暗くなったような、突発現象として観測され ることが期待されていて、Kilonova と呼ばれている。また放出される物 質と星周物質との間に形成される衝撃波によって加速された電子による電 波放射も連星合体に付随すると期待されている [5]。これらの連星中性子 星合体に付随する電磁波放射の性質を理論的に議論することが現在、求め られている。

本研究では、連星中性子星合体シミュレーションを行うことによって、 連星合体の際に放出される物質の量、分布や速度を計算した。シミュレー ションの結果から、実際に観測される kilonova や電波放射の性質を議論 する。

2 Formulation

連星中性子星の数値シミュレーションは、数値相対論の AMR コード である、SACRA コードを用いて行った [6]。このコードをアインシュタイ ン方程式と流体の方程式を (3+1) 分解を行い安定に計算する Baumgarte-Shapiro-Shibata-Nakamura 形式 [7] と呼ばれる形式に基づいている。

また初期条件は、渦なし回転を仮定し、LORENE というパッケージを 用いて計算している [8]。表1に今回のシミュレーションのセットアップ を記した。ここで、APR4、ALF2、H4、MS とはそれぞれ原子核理論か ら予想された中性子星の状態方程式である。

3 Results

連星中性子星の合体後の進化は、質量に応じて、大質量中性子星が形成 される場合と、直接ブラックホールが形成される場合がある。表に数値シ ミュレーションから得られたアンバウンドになった物質の質量を各モデル に対して記した。この表からわかるように、アンバウンドとなって連星合 体から放出される物質の質量は、合体後に大質量中性子星が形成される 場合は約 10⁻³ M_☉ であり、直接ブラックホールが形成される場合はそれ 以下である。また図1に放出される物質の密度分布のスナップショットを 載せている。この図からわかるように、合体後に大質量中性子星が形成さ れる際のバウンスによって多くの物質が放出されていることに起因する。 また、質量比が大きい連星の合体では、合体直前に、軽い中性子星が潮汐 破壊をされることによっても多くの質量を放出している。この潮汐破壊に よる質量放出は、放出される物質が赤道面に集中することが特徴である。 またこれらの放出される物質の先頭の速度は、光速の数 10 パーセントに 達していることがわかった。

表 1: AMR のグリッド構造。 $l_c \geq l_f$ は大きい動かないドメインと小さい 動くドメインの数。 Δx は最も深いドメインのグリッド間隔。L は境界ま での距離で $L_{\min} = N\Delta x$ である。 $R_{\text{diam}}/\Delta x$ は軽い中性子星と重い中性 子星の semi-major diameter を張る最も深いドメインでのグリッドの数。 λ_0 は初期データにおける重力波の波長。 Γ_{th} は状態方程式の熱の寄与を 表す断熱指数である。

Model	l_c	l_f	$\Delta x(\mathrm{km})$	$R_{\rm diam}/\Delta x$	$L (\rm km)$	L_{\min} (km)	$\lambda_0 \; ({ m km})$	$\Gamma_{ m th}$
APR4-130160	5	4	0.172	(102, 96)	2636	10.3	518	1.8
APR4-140150	5	4	0.167	(102, 101)	2572	10.0	518	1.8
APR4-145145	5	4	0.166	(102, 102)	2550	10.0	518	1.8
APR4-130150	5	4	0.172	(102, 98)	2636	10.3	500	1.8
APR4-140140	5	4	0.167	(102, 102)	2572	10.0	500	1.8
APR4-120150	5	4	0.172	(103, 98)	2644	10.3	482	1.6, 1.8, 2.0
APR4-120140	5	4	0.174	(102, 99)	2679	10.5	464	1.8
APR4-125135	5	4	0.174	(102, 100)	2665	10.4	464	1.8
APR4-130130	5	4	0.171	(102, 102)	2629	10.3	464	1.8
ALF2-120150	5	4	0.200	(102, 98)	3065	12.0	482	1.8
ALF2-125145	5	4	0.199	(102, 100)	3054	11.9	482	1.8
ALF2-130140	5	4	0.198	(102, 101)	3044	11.9	482	1.8
ALF2-135135	5	4	0.195	(103, 103)	3001	11.7	482	1.8
H4-130150	5	4	0.222	(102, 98)	3429	13.4	480	1.8
H4-140140	5	4	0.219	(102, 102)	3358	13.1	480	1.8
H4-120150	5	4	0.228	(102, 96)	3501	13.7	463	1.6, 1.8, 2.0
H4-125145	5	4	0.226	(102, 98)	3465	13.5	463	1.8
H4-130140	5	4	0.223	(102, 100)	3430	13.4	463	1.8
H4-135135	5	4	$0\ 221$	(102, 102)	3393	13.3	463	1.6, 1.8, 2.0
H4-120140	5	4	0.230	(101, 98)	3537	13.8	446	1.8
H4-125135	5	4	0.227	(102, 100)	3494	13.6	446	1.8
H4-130130	5	4	0.223	(103, 103)	3430	13.4	446	1.8
MS1-140140	5	4	0.237	(103, 103)	3644	14.2	480	1.8
MS1-120150	5	4	0.249	(101, 97)	3823	14.9	463	1.8
MS1-125145	5	4	0.244	(102, 99)	3751	14.7	463	1.8
MS1-130140	5	4	0.244	(101, 100)	3751	14.7	463	1.8
MS1-135135	5	4	0.242	(102, 102)	3715	14.5	463	1.8
MS1-130130	5	4	0.244	(102, 102)	3751	14.7	446	1.8

図 1: 密度分布のスナップショット。モデルは H4-1215 である。

Model	Γ_{th}	Remnant	$M_{\rm *esc}(10^{-3}M_{\odot})$
APR4-130160	1.8	BH	2.0
APR4-140150	1.8	BH	0.6
APR4-145145	1.8	BH	0.1
APR4-130150	1.8	$\rm HMNS{\rightarrow}BH$	12
APR4-140140	1.8	$\rm HMNS{\rightarrow}BH$	11
APR4-120150	1.6	HMNS	9.0
APR4-120150	1.8	HMNS	8.1
APR4-120150	2.0	HMNS	7.4
APR4-125145	1.8	HMNS	6.9
APR4-130140	1.8	HMNS	8.0
APR4-135135	1.6	HMNS	11
APR4-135135	1.8	HMNS	7.2
APR4-120140	1.8	HMNS	3.2
APR4-125135	1.8	HMNS	5.3
APR4-130130	1.8	HMNS	2.1
ALF2-120150	1.8	HMNS	5.5
ALF2-125145	1.8	HMNS	2.7
ALF2-130140	1.8	$\mathrm{HMNS} \to \mathrm{BH}$	1.5
ALF2-135135	1.8	$\mathrm{HMNS} \to \mathrm{BH}$	1.2
H4-130150	1.8	$HMNS \rightarrow BH$	3.1
H4-140140	1.8	$\mathrm{HMNS}{\rightarrow}\mathrm{BH}$	0.3
H4-120150	1.6	HMNS	4.6
H4-120150	1.8	HMNS	3.5
H4-120150	2.0	HMNS	4.0
H4-125145	1.8	HMNS	2.2
H4-130140	1.8	HMNS	0.7
H4-135135	1.6	$\mathrm{HMNS}{\rightarrow}\mathrm{BH}$	0.7
H4-135135	1.8	$\mathrm{HMNS}{\rightarrow}\mathrm{BH}$	0.5
H4-120140	1.8	HMNS	2.3
H4-125135	1.8	HMNS	0.6
H4-130130	1.8	HMNS	0.3
MS1-140140	1.8	HMNS	0.6
MS1-120150	1.8	HMNS	3.4
MS1-125145	1.8	HMNS	1.7
MS1-130140	1.8	HMNS	0.5
MS1-135135	1.8	HMNS	3.5
MS1-130130	1.8	HMNS	1.9

これらの質量放出をもとに、連星中性子星合体に付随する電磁波放射 を以下で計算する。放出された物質の内部で起こる核反応起源の光は、Li and Paczynski[4] によると、合体後に光度が最大になるタイムスケールは、

$$t_{\rm peak} \approx 0.1 {\rm d} \left(\frac{\beta_0}{0.2}\right)^{-1/2} \left(\frac{M_{\rm *esc}}{10^{-3}}\right)^{1/2},$$
 (1)

で与えられ、この時刻に対応する光度は、

$$L_{\text{peak}} \approx 7 \times 10^{41} \text{ ergs/s} \left(\frac{f_{\text{eff}}}{3 \times 10^{-6}} \right) \\ \times \left(\frac{\beta_0}{0.2} \right)^{1/2} \left(\frac{M_{\text{*esc}}}{10^{-3} M_{\odot}} \right)^{1/2}$$
(2)

である。このように、合体後に大質量中性子星が形成される場合、重力波 検出器などが観測可能な 200Mpc などで起こる、典型的な連星中性子星合 体で予想される kilonova は LSST などの将来の突発天体サーベイの望遠 鏡で観測可能である [9]。

また、放出された物質は星周物質との相互作用することで減速し、その ときに作られる衝撃波で電子を加速して、電波で輝くことが予想されてい る。連星合体に付随する電波放射のタイムスケールは [5]、

$$\tau_{\rm radio} \sim 4 \,\,{\rm yrs} \left(\frac{E_0}{10^{50} \,\,{\rm ergs}}\right)^{1/3} \left(\frac{n_0}{1 \,\,{\rm cm}^{-3}}\right)^{-1/3} \left(\frac{\beta_0}{0.2}\right)^{-5/3}.$$
 (3)

と評価できて、このときのフラックスは

$$F_{\nu} \approx 90 \ \mu \text{Jy} \left(\frac{E_0}{10^{50} \text{ ergs}}\right) \left(\frac{n_0}{1 \text{ cm}^{-3}}\right)^{0.9} \left(\frac{\beta_0}{0.2}\right)^{2.8} \\ \times \left(\frac{D}{200 \text{ Mpc}}\right)^{-2} \left(\frac{\nu_{\text{obs}}}{1.4 \text{ GHz}}\right)^{-0.75}, \tag{4}$$

と計算できる。従って、典型的な連星合体の質量放出が比較的、密度の大きい環境で起これば、ELVA などの電波干渉計で観測可能である [?]。

4 Summary

数値相対論によって、連星中性子星合体のシミュレーションを行った。 特に、本講演では連星中性子星合体から放出される物質について詳しく異 なる4つ状態方程式、様々な質量の連星に対して広く評価を行った。その 結果、典型的な連星中性子星の合体では、10⁻³M_☉ほどの物質が光速の数 10パーセント程度で放出されることがわかった。このような質量放出が 起こると、連星中性子星合体に付随されると予想されている、kilonovaや 電波放射が将来の計画、LSST や EVLA によって観測可能であることが わかった。これらの電磁波観測は、連星合体の母銀河の特定など重力波天 文学にとって非常に重要な役割を果たすことが期待される。

参考文献

- K. Hotokezaka, K. Kyutoku, K. Kiuchi, H. Okawa, Y. Sekiguchi, M. Shibata, and K. Taniguchi, submitted in Physical review D.
- [2] J. Abadie, et al., Nucl. Instrum. Meth. A624, 223 (2010): T. Accadia, et al., Class. Quantum Grav. 28, 025005 (2011): K. Kuroda, et al., Class. Quantum Grav. 27, 084004 (2010).
- [3] V. Kalogera et al., Phys. Rep. 442, 75 (2007).
- [4] L. Li and B. Paczyński, Astrophys. J. 507, L59 (1998).
- [5] E. Nakar and T. Piran, Nature **478**, 82 (2011); arxiv:1102.1020.
- [6] T. Yamamoto, M. Shibata, and K. Taniguchi, Phys. Rev. D 78, 064054 (2008).
- [7] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995); T.
 W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1998);
 M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower,
 Phys. Rev. Lett. 96, 111101 (2006); J. G. Baker, J. Centrella, D.-I.
 Choi, M. Koppitz, and J. van Meter, Phys. Rev. Lett. 96, 111102 (2006).
- [8] http://www.lorene.obspm.fr/
- [9] http://www.lsst.org/lsst/
- [10] http://www.aoc.nrao.edu/evla/